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SIDEBAR Formal mathematical explanation of formal languages

Kyle Gorman describes programming languages this way:

Most (if not all) programming languages are drawn from the class of
context-free languages.
Context free languages are parsed with context-free grammars, which
provide efficient parsing.
The regular languages are also efficiently parsable and used extensively in
computing for string matching.
String matching applications rarely require the expressiveness of
context-free.
There are a number of formal language classes, a few of which are shown
here (in decreasing complexity):43

Recursively enumerable
Context-sensitive
Context-free
Regular

Natural languages are:

Not regular 44

Not context-free 45

Can’t be defined by any formal grammar 46

Let us build a quick and dirty chatbot. It will not be very capable, and it will require a lot of
thinking about the English language. You will also have to hardcode regular expressions to
match the ways people may try to say something. But do not worry if you think you couldn’t
have come up with this Python code yourself. You will not have to try to think of all the different
ways people can say something, like we did in this example. You will not even have to write
regular expressions (regexes) to build an awesome chatbot. We show you how to build a chatbot
of your own in later chapters without hardcoding anything. A modern chatbot can learn from
reading (processing) a bunch of English text. And we show you how to do that in later chapters.

This pattern matching chatbot is an example of a tightly controlled chatbot. Pattern matching
chatbots were common before modern machine learning chatbot techniques were developed.
And a variation of the pattern matching approach we show you here is used in chatbots like
Amazon Alexa and other virtual assistants.

For now let’s build a FSM, a regular expression, that can speak lock language (regular language).

1.5 A simple chatbot
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We could program it to understand lock language statements, such as "01-02-03." Even better,
we’d like it to understand greetings, things like "open sesame" or "hello Rosa."

An important feature for a prosocial chatbot is to be able to respond to a greeting. In high school,
teachers often chastised me for being impolite when I’d ignore greetings like this while rushing
to class. We surely do not want that for our benevolent chatbot.

For communication between two machines, you would define a handshake with something like
an  (acknowledgement) signal to confirm receipt of each message. But our machines areACK

going to be interacting with humans who say things like "Good morning, Rosa". We do not want
it sending out a bunch of chirps, beeps, or  messages, like it’s syncing up a modem or HTTPACK

connection at the start of a conversation or web browsing session.

Human greetings and handshakes are a little more informal and flexible. So recognizing the
greeting  won’t be as simple as building a machine handshake. So you will want a fewintent
different approaches in your toolbox.

NOTE An intent is a category of possible intentions the user has for the NLP system
or chatbot. Words "hello" and "hi" might be collected together under the 

 intent, for when the user wants to start a conversation. Anothergreeting
intent might be to carry out some task or command, such as a "translate"
command or the query "How do I say 'Hello' in Ukrainian?". You’ll learn about
intent recognition throughout the book and put it to use in a chatbot in
chapter 12.

Your first chatbot will be straight out of the 80’s. Imagine you want a chatbot to help you select a
game to play, like chess… or a Thermonuclear War. But first your chatbot must find out if you
are professor Falken or General Beringer, or some other user that knows what they are doing.47

It will only be able to recognize a few greetings. But this approach can be extended to help you
implement simple keyword-based intent recognizers on projects similar to those mentioned
earlier in this chapter.

Listing 1.1 Keyword detection using str.split

1.6 Keyword-based greeting recognizer

>>> greetings = "Hi Hello Greetings".split()
>>> user_statement = "Hello Joshua"
>>> user_token_sequence = user_statement.split()
>>> user_token_sequence
['Hello', 'Joshua']
>>> if user_token_sequence[0] in greetings:
...     bot_reply = "Themonucluear War is a strange game. "  
...     bot_reply += "The only winning move is NOT TO PLAY."
>>> else:
...     bot_reply = "Would you like to play a nice game of chess?"
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"Hi", "Hello", and "Greetings" might be the keywords programmed into Joshua,
running on a supercomputer called "WOPR" in .War Games

This simple NLP pipeline (program) has only two intent categories: "greeting" and "unknown" (
). And it uses a very simple algorithm called keyword detection. Chatbots that recognize theelse

user’s intent like this have capabilities similar to modern command line applications or phone
trees from the 90’s.

Rule-based chatbots can be much much more fun and flexible than this simple program.
Developers have so much fun building and interacting with chatbots that they build chatbots to
make even deploying and monitoring servers a lot of fun. , or devops with chatbots, hasChatops
become popular on most software development teams. You can build a chatbot like this to
recognize more intents by adding  statements before the . Or you can go beyondelif else

keyword-based NLP and start thinking about ways to improve it using regular expressions.

A keyword based chatbot would recognize "Hi", "Hello", and "Greetings", but it wouldn’t
recognize "Hiiii" or "Hiiiiiiiiiiii" - the more excited renditions of "Hi". Perhaps you could
hardcode the first 200 versions of "Hi", such as . Or you could["Hi", "Hii", "Hiii", …]

programmatically create such a list of keywords. Or you could save yourself a lot of trouble and
make your bot deal with literally infinite variations of "Hi" using . Regularregular expressions
expression  can match text much more robustly than any hard-coded rules or lists ofpatterns
keywords.

Regular expressions recognize patterns for any sequence of characters or symbols.  With48

keyword based NLP, you and your users need to spell keywords and commands exactly the same
way for the machine to respond correctly. So your keyword greeting recognizer would miss
greetings like "Hey" or even "hi" because those strings aren’t in your list of greeting words. And
what if your "user" used a greeting that starts or ends with punctuation, such as "'sup" or "Hi,".
You could do  with the  method on both your greetings and the usercase folding str.split()

statement. And you could add more greetings to your list of greeting words. You could even add
misspellings and typos to ensure they aren’t missed. But that is a lot of manual "hard-coding" of
data into your NLP pipeline.

You will soon learn how to use machine learning for more data-driven and automated NLP
pipelines. And when you graduate to the much more complex and accurate  modelsdeep learning
of chapter 7 and beyond, you will find that there is still much "brittleness" in modern NLP
pipelines. Robin Jia’s thesis explains how to measure and improve NLP robustness in his thesis (

)] But for now, you need to understand the basics. When yourhttps://proai.org/robinjia-thesis
user wants to specify actions with precise patterns of characters similar to programming language
commands, that’s where regular expressions shine.

1.6.1 Pattern-based intent recognition
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There are two "official" regular expression packages in Python. The  package isre
pre-installed with all versions of Python. The  package includes additionalregex
features such as fuzzy pattern matching.

 means "OR", '\*' means the preceding characters can occur 0 or more times'|'
and still match.

Ignoring the character case means this regular expression will match "Hey" as well
as "hey".

In regular expressions, you can specify a character class with square brackets. And you can use a
dash ( ) to indicate a range of characters without having to type them all out individually. So the-

regular expression  will match any single lowercase letter, "a" through "z". The star"[a-z]"

("\*") after a character class means that the regular expression will match any number of
consecutive characters if they are all within that character class.

Let’s make our regular expression a lot more detailed to try to match more greetings.

>>> import re  
>>> r = "(hi|hello|hey)[ ,:.!]*([a-z]*)"  
>>> re.match(r, 'Hello Rosa', flags=re.IGNORECASE)  
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re.match(r, "hi ho, hi ho, it's off to work ...", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 5), match='hi ho'>
>>> re.match(r, "hey, what's up", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 3), match='hey>

>>> r = r"[^a-z]*([y]o|[h']?ello|ok|hey|(good[ ])(morn[gin']{0,3}|"
>>> r += r"afternoon|even[gin']{0,3}))[\s,;:]{1,3}([a-z]{1,20})")
>>> re_greeting = re.compile(r, flags=re.IGNORECASE)  
>>> re_greeting.match('Hello Rosa')
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re_greeting.match('Hello Rosa').groups()
('Hello', None, None, 'Rosa')
>>> re_greeting.match("Good morning Rosa")
<_sre.SRE_Match object; span=(0, 17), match="Good morning Rosa">
>>> re_greeting.match("Good Manning Rosa")  
>>> re_greeting.match('Good evening Rosa Parks').groups()  
('Good evening', 'Good ', 'evening', 'Rosa')
>>> re_greeting.match("Good Morn'n Rosa")
<_sre.SRE_Match object; span=(0, 16), match="Good Morn'n Rosa">
>>> re_greeting.match("yo Rosa")
<_sre.SRE_Match object; span=(0, 7), match='yo Rosa'>
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You can compile regular expressions so you do not have to specify the options ( 
flags) each time you use it.

Notice that this regular expression cannot recognize (match) words with typos.

Our chatbot can separate different parts of the greeting into groups, but it will be 
unaware of Rosa’s famous last name, because we do not have a pattern to match 
any characters after the first name.
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TIP The "r" before the quote symbol ( ) indicates that the quoted string literal isr'

a  string. The "r" does not mean  expression. A Python raw stringraw regular
just makes it easier to use the backslashes used to escape special symbols
within a regular expression. Telling Python that a  is "raw" means thatstr

Python will skip processing the backslashes and pass them on to the regular
expression parser (  package). Otherwise you would have to escape eachre

and every backslash in your regular expression with a double-backslash ('\\'
). So the whitespace matching symbol  would become , and special'\s' '\\s'

characters like literal curly braces would become  and .'\\{' '\\}'

There is a lot of logic packed into that first line of code, the regular expression. It gets the job
done for a surprising range of greetings. But it missed that "Manning" typo, which is one of the
reasons NLP is hard. In machine learning and medical diagnostic testing, that’s called a false

 classification error. Unfortunately, it will also match some statements that humansnegative
would be unlikely to ever say—a , which is also a bad thing. Having both falsefalse positive
positive and false negative errors means that our regular expression is both too liberal (inclusive)
and too strict (exclusive). These mistakes could make our bot sound a bit dull and mechanical.
We’d have to do a lot more work to refine the phrases it matches for the bot to behave in a more
intelligent human-like way.

And this tedious work would be highly unlikely to ever succeed at capturing all the slang and
misspellings people use. Fortunately, composing regular expressions by hand isn’t the only way
to train a chatbot. Stay tuned for more on that later (the entire rest of the book). So we only use
them when we need precise control over a chatbot’s behavior, such as when issuing commands
to a voice assistant on your mobile phone.

But let’s go ahead and finish up our one-trick chatbot by adding an output generator. It needs to
say something. We use Python’s string formatter to create a "template" for our chatbot response.

We do not yet know who is chatting with the bot, and we will not worry about it
here.

So if you run this little script and chat to our bot with a phrase like "Hello Rosa", it will respond

>>> my_names = set(['rosa', 'rose', 'chatty', 'chatbot', 'bot',
...     'chatterbot'])
>>> curt_names = set(['hal', 'you', 'u'])
>>> greeter_name = ''  
>>> match = re_greeting.match(input())
...
>>> if match:
...     at_name = match.groups()[-1]
...     if at_name in curt_names:
... print("Good one.")
...     elif at_name.lower() in my_names:
... print("Hi {}, How are you?".format(greeter_name))
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by asking about your day. If you use a slightly rude name to address the chatbot, she will be less
responsive, but not inflammatory, to encourage politeness.  If you name someone else who49

might be monitoring the conversation on a party line or forum, the bot will keep quiet and allow
you and whomever you are addressing to chat. Obviously, there is no one else out there watching
our  line, but if this were a function within a larger chatbot, you want to deal with theseinput()

sorts of things.

Because of the limitations of computational resources, early NLP researchers had to use their
human brain’s computational power to design and hand-tune complex logical rules to extract
information from a natural language string. This is called a pattern-based approach to NLP. The
patterns do not have to be merely character sequence patterns, like our regular expression. NLP
also often involves patterns of word sequences, or parts of speech, or other "higher level"
patterns. The core NLP building blocks like stemmers and tokenizers as well as sophisticated
end-to-end NLP dialog engines (chatbots) like ELIZA were built this way, from regular
expressions and pattern matching. The art of pattern-matching approaches to NLP is coming up
with elegant patterns that capture just what you want, without too many lines of regular
expression code.

TIP Theory of a computational mind

This classical NLP pattern-matching approach is based on the computational
theory of mind (CTM). CTM theorizes that thinking is a deterministic
computational process that acts in a single logical thread or sequence.50

Advancements in neuroscience and NLP led to the development of a
"connectionist" theory of mind around the turn of the century. This newer
theory inpsired the artificial neural networks of deep learning used that
process natural language sequences many different ways simultaneously, in
parallel.  51 52

In chapter 2 you will learn more about pattern-based approaches to tokenizing—splitting text
into tokens or words with algorithms such as the "Treebank tokenizer." You will also learn how
to use pattern matching to stem (shorten and consolidate) tokens with something called a Porter
stemmer. But in later chapters we take advantage of the exponentially greater computational
resources, as well as our larger datasets, to shortcut this laborious hand programming and
refining.

If you are new to regular expressions and want to learn more, you can check out appendix B or
the online documentation for Python regular expressions. But you do not have to understand
them just yet. We’ll continue to provide you with example regular expressions as we use them
for the building blocks of our NLP pipeline. So, do not worry if they look like gibberish. Human
brains are pretty good at generalizing from a set of examples, and I’m sure it will become clear
by the end of this book. And it turns out machines can learn this way as well…
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Imagine a giant database containing sessions of dialog between humans. You might have
statements paired with responses from thousands or even millions of conversations. One way to
build a chatbot would be to search such a database for the exact same string of characters the
user just "said" to your chatbot. And then you could use one of the responses to that statement
that other humans have said in the past. That would result in a statistical or data-driven approach
to chatbot design. And that could take the place of all that tedious pattern matching algorithm
design.

Think about how a single typo or variation in the statement would trip up pattern-matching bot or
even a data-driven both with millions of statements (utterances) in its database. Bit and character
sequences are discrete and very precise. They either match or they do not. And people are
creative. It may not seem like it sometimes, but very often people say somthing with new
patterns of characters never ever seen before. So you’d like your bot to be able to measure the
difference in  between character sequences. In later chapters you’ll get better and bettermeaning
at extracting  from text!meaning

When we use character sequence matches to measure distance between natural language phrases,
we’ll often get it wrong. Phrases with similar meaning, like "good" and "okay", can often have
different character sequences and large distances when we count up character-by-character
matches to measure distance. And sometimes two words look almost the same but mean
completely different things: "bad" and "bag." You can count the number of characters that
change from one word to another with algorithms such as Jaccard and Levenshtein algorithms.
But these distance or "change" counts fail to capture the essence of the relationship between two
disimilar strings of characters such as "good" and "okay.".= And they fail to account for how
small spelling differences might not really be typos but rather completely different words, such
as "bad" and "bag".

Distance metrics designed for numerical sequences and vectors are useful for a few NLP
applications, like spelling correctors and recognizing proper nouns. So we use these distance
metrics when they make sense. But for NLP applications where we are more interested in the
meaning of the natural language than its spelling, there are better approaches. We use vector
representations of natural language words and text and some distance metrics for those vectors
for those NLP applications. We show you each approach, one by one, as we talk about these
different applications and the kinds of vectors they are used with.

We do not stay in this confusing binary world of logic for long, but let’s imagine we’re famous
World War II-era code-breaker Mavis Batey at Bletchley Park and we have just been handed that
binary, Morse code message intercepted from communication between two German military
officers. It could hold the key to winning the war. Where would we start? Well the first layer of
deciding would be to do something statistical with that stream of bits to see if we can find

1.6.2 Another way
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patterns. We can first use the Morse code table (or ASCII table, in our case) to assign letters to
each group of bits. Then, if the characters are gibberish to us, as they are to a computer or a
cryptographer in WWII, we could start counting them up, looking up the short sequences in a
dictionary of all the words we have seen before and putting a mark next to the entry every time it
occurs. We might also make a mark in some other log book to indicate which message the word
occurred in, creating an encyclopedic index to all the documents we have read before. This
collection of documents is called a , and the words or sequences we have listed in ourcorpus
index are called a .lexicon

If we’re lucky, and we’re not at war, and the messages we’re looking at aren’t strongly
encrypted, we’ll see patterns in those German word counts that mirror counts of English words
used to communicate similar kinds of messages. Unlike a cryptographer trying to decipher
German Morse code intercepts, we know that the symbols have consistent meaning and aren’t
changed with every key click to try to confuse us. This tedious counting of characters and words
is just the sort of thing a computer can do without thinking. And surprisingly, it’s nearly enough
to make the machine appear to understand our language. It can even do math on these statistical
vectors that coincides with our human understanding of those phrases and words. When we show
you how to teach a machine our language using Word2Vec in later chapters, it may seem
magical, but it’s not. It’s just math, computation.

But let’s think for a moment about what information has been lost in our effort to count all the
words in the messages we receive. We assign the words to bins and store them away as bit
vectors like a coin or token sorter (see figure 1.2) directing different kinds of tokens to one side
or the other in a cascade of decisions that piles them in bins at the bottom. Our sorting machine
must take into account hundreds of thousands if not millions of possible token "denominations,"
one for each possible word that a speaker or author might use. Each phrase or sentence or
document we feed into our token sorting machine will come out the bottom, where we have a
"vector" with a count of the tokens in each slot. Most of our counts are zero, even for large
documents with verbose vocabulary. But we have not lost any words yet. What have we lost?
Could you, as a human understand a document that we presented you in this way, as a count of
each possible word in your language, without any sequence or order associated with those
words? I doubt it. But if it was a short sentence or tweet, you’d probably be able to rearrange
them into their intended order and meaning most of the time.
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Figure 1.5 Canadian coin sorter

Here’s how our token sorter fits into an NLP pipeline right after a tokenizer (see chapter 2). We
have included a stopword filter as well as a "rare" word filter in our mechanical token sorter
sketch. Strings flow in from the top, and bag-of-word vectors are created from the height profile
of the token "stacks" at the bottom.
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Figure 1.6 Token sorting tray

It turns out that machines can handle this bag of words quite well and glean most of the
information content of even moderately long documents this way. Each document, after token
sorting and counting, can be represented as a vector, a sequence of integers for each word or
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token in that document. You see a crude example in figure 1.3, and then chapter 2 shows some
more useful data structures for bag-of-word vectors.

This is our first vector space model of a language. Those bins and the numbers they contain for
each word are represented as long vectors containing a lot of zeros and a few ones or twos
scattered around wherever the word for that bin occurred. All the different ways that words could
be combined to create these vectors is called a . And relationships between vectorsvector space
in this space are what make up our model, which is attempting to predict combinations of these
words occurring within a collection of various sequences of words (typically sentences or
documents). In Python, we can represent these sparse (mostly empty) vectors (lists of numbers)
as dictionaries. And a Python  is a special kind of dictionary that bins objects (includingCounter

strings) and counts them just like we want.

You can probably imagine some ways to clean those tokens up. We do just that in the next
chapter. But you might also think to yourself that these sparse, high-dimensional vectors (many
bins, one for each possible word) aren’t very useful for language processing. But they are good
enough for some industry-changing tools like spam filters, which we discuss in chapter 3.

And we can imagine feeding into this machine, one at a time, all the documents, statements,
sentences, and even single words we could find. We’d count up the tokens in each slot at the
bottom after each of these statements was processed, and we’d call that a vector representation of
that statement. All the possible vectors a machine might create this way is called a .vector space
And this model of documents and statements and words is called a . It allowsvector space model
us to use linear algebra to manipulate these vectors and compute things like distances and
statistics about natural language statements, which helps us solve a much wider range of
problems with less human programming and less brittleness in the NLP pipeline. One statistical
question that is asked of bag-of-words vector sequences is, "What is the combination of words
most likely to follow a particular bag of words?" Or, even better, if a user enters a sequence of
words, "What is the closest bag of words in our database to a bag-of-words vector provided by
the user?" This is a search query. The input words are the words you might type into a search
box, and the closest bag-of-words vector corresponds to the document or web page you were
looking for. The ability to efficiently answer these two questions would be sufficient to build a
machine learning chatbot that could get better and better as we gave it more and more data.

But wait a minute, perhaps these vectors aren’t like any you’ve ever worked with before. They’re
extremely high-dimensional. It’s possible to have millions of dimensions for a 3-gram
vocabulary computed from a large corpus. In chapter 3, we discuss the curse of dimensionality

>>> from collections import Counter

>>> Counter("Guten Morgen Rosa".split())
Counter({'Guten': 1, 'Rosa': 1, 'morgen': 1})
>>> Counter("Good morning, Rosa!".split())
Counter({'Good': 1, 'Rosa!': 1, 'morning,': 1})
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and some other properties that make high dimensional vectors difficult to work with.

In chapter 3, we show you how to consolidate words into a smaller number of vector dimensions
to help mitigate the curse of dimensionality and maybe turn it to our advantage. When we project
these vectors onto each other to determine the distance between pairs of vectors, this will be a
reasonable estimate of the similarity in their  rather than merely their statistical wordmeaning
usage. This vector distance metric is called , which we talk about incosine distance metric
chapter 3 and then reveal its true power on reduced dimension topic vectors in chapter 4. We can
even project ("embed" is the more precise term) these vectors in a 2D plane to have a "look" at
them in plots and diagrams to see if our human brains can find patterns. We can then teach a
computer to recognize and act on these patterns in ways that reflect the underlying meaning of
the words that produced those vectors.

Imagine all the possible tweets or messages or sentences that humans might write. Even though
we do repeat ourselves a lot, that’s still a lot of possibilities. And when those tokens are each
treated as separate, distinct dimensions, there is no concept that "Good morning, Hobs" has some
shared meaning with "Guten Morgen, Hannes." We need to create some reduced dimension
vector space model of messages so we can label them with a set of continuous (float) values. We
could rate messages and words for qualities like subject matter and sentiment. We could ask
questions like:

How likely is this message to be a question?
How much is it about a person?
How much is it about me?
How angry or happy does it sound?
Is it something I need to respond to?

Think of all the ratings we could give statements. We could put these ratings in order and
"compute" them for each statement to compile a "vector" for each statement. The list of ratings
or dimensions we could give a set of statements should be much smaller than the number of
possible statements, and statements that mean the same thing should have similar values for all
our questions.

These rating vectors become something that a machine can be programmed to react to. We can
simplify and generalize vectors further by clumping (clustering) statements together, making
them close on some dimensions and not on others.

But how can a computer assign values to each of these vector dimensions? Well, if we simplified
our vector dimension questions to things like, "Does it contain the word 'good'? Does it contain
the word 'morning'?" And so on. You can see that we might be able to come up with a million or
so questions resulting in numerical value assignments that a computer could make to a phrase.

1.7 A brief overflight of hyperspace
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This is the first practical vector space model, called a bit vector language model, or the sum of
"one-hot encoded" vectors. You can see why computers are just now getting powerful enough to
make sense of natural language. The millions of million-dimensional vectors that humans might
generate simply "Does not compute!" on a supercomputer of the 80s, but is no problem on a
commodity laptop in the 21st century. More than just raw hardware power and capacity made
NLP practical; incremental, constant-RAM, linear algebra algorithms were the final piece of the
puzzle that allowed machines to crack the code of natural language.

There is an even simpler, but much larger representation that can be used in a chatbot. What if
our vector dimensions completely described the exact sequence of characters. The vector for
each character would contain the answer to binary (yes/no) questions about every letter and
punctuation mark in your alphabet:

"Is the first letter an 'A'?" "Is the first letter an 'B'?" … "Is the first letter an 'z'?"

And the next vector would answer the same boring questions about the next letter in the
sequence.

"Is the second letter an A?" "Is the second letter an B?" …

Depsite all the "no" answers or zeroes in this vector sequence, it does have one advantage over
all other possible representations of text - it retains every tiny detail, every bit of information
contained in the original text, including the order of the characters and words. This like the paper
representation of a song for a player piano that only plays a single note at a time. The "notes" for
this natural language mechanical player piano are the 26 uppercase and lowercase letters plus
any punctuation that the piano must know how to "play." The paper roll wouldn’t have to be
much wider than for a real player piano and the number of notes in some long piano songs
doesn’t exceed the number of characters in a small document.

But this one-hot character sequence encoding representation is mainly useful for recording and
then replaying an exact piece rather than composing something new or extracting the essence of
a piece. We can’t easily compare the piano paper roll for one song to that of another. And this
representation is longer than the original ASCII-encoded representation of the document. The
number of possible document representations just exploded in order to retain information about
each sequence of characters. We retained the order of characters and words but expanded the
dimensionality of our NLP problem.

These representations of documents do not cluster together well in this character-based vector
world. The Russian mathematician Vladimir Levenshtein came up with a brilliant approach for
quickly finding similarities between vectors (strings of characters) in this world. Levenshtein’s
algorithm made it possible to create some surprisingly fun and useful chatbots, with only this
simplistic, mechanical view of language. But the real magic happened when we figured out how
to compress/embed these higher dimensional spaces into a lower dimensional space of fuzzy
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meaning or topic vectors. We peek behind the magician’s curtain in chapter 4 when we talk
about latent semantic indexing and latent Dirichlet allocation, two techniques for creating much
more dense and meaningful vector representations of statements and documents.

The order of words matters. Those rules that govern word order in a sequence of words (like a
sentence) are called the grammar of a language. That’s something that our bag of words or word
vector discarded in the earlier examples. Fortunately, in most short phrases and even many
complete sentences, this word vector approximation works OK. If you just want to encode the
general sense and sentiment of a short sentence, word order is not terribly important. Take a look
at all these orderings of our "Good morning Rosa" example.

Now if you tried to interpret each of those strings in isolation (without looking at the others),
you’d probably conclude that they all probably had similar intent or meaning. You might even
notice the capitalization of the word "Good" and place the word at the front of the phrase in your
mind. But you might also think that "Good Rosa" was some sort of proper noun, like the name of
a restaurant or flower shop. Nonetheless, a smart chatbot or clever woman of the 1940s in
Bletchley Park would likely respond to any of these six permutations with the same innocuous
greeting, "Good morning my dear General."

Let’s try that (in our heads) on a much longer, more complex phrase, a logical statement where
the order of the words matters a lot:

The number of permutations exploded from  in our simple greeting to factorial(3) == 6

 in our longer statement! And it’s clear that the logic containedfactorial(12) == 479001600

in the order of the words is important to any machine that would like to reply with the correct
response. Even though common greetings are not usually garbled by bag-of-words processing,
more complex statements can lose most of their meaning when thrown into a bag. A bag of

1.8 Word order and grammar

>>> from itertools import permutations

>>> [" ".join(combo) for combo in\
...     permutations("Good morning Rosa!".split(), 3)]
['Good morning Rosa!',
 'Good Rosa! morning',
 'morning Good Rosa!',
 'morning Rosa! Good',
 'Rosa! Good morning',
 'Rosa! morning Good']

>>> s = """Find textbooks with titles containing 'NLP',
...     or 'natural' and 'language', or
...     'computational' and  'linguistics'."""
>>> len(set(s.split()))
12
>>> import numpy as np
>>> np.arange(1, 12 + 1).prod()  # factorial(12) = arange(1, 13).prod()
479001600
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words is not the best way to begin processing a database query, like the natural language query in
the preceding example.

Whether a statement is written in a formal programming language like SQL, or in an informal
natural language like English, word order and grammar are important when a statement intends
to convey logical relationships between things. That’s why computer languages depend on rigid
grammar and syntax rule parsers. Fortunately, recent advances in natural language syntax tree
parsers have made possible the extraction of syntactical and logical relationships from natural
language with remarkable accuracy (greater than 90%).  In later chapters, we show you how to53

use packages like  (Parsey McParseface) and  to identify these relationships.SyntaxNet SpaCy

And just as in the Bletchley Park example greeting, even if a statement doesn’t rely on word
order for logical interpretation, sometimes paying attention to that word order can reveal subtle
hints of meaning that might facilitate deeper responses. These deeper layers of natural language
processing are discussed in the next section. And chapter 2 shows you a trick for incorporating
some of the information conveyed by word order into our word-vector representation. It also
shows you how to refine the crude tokenizer used in the previous examples ( ) tostr.split()

more accurately bin words into more appropriate slots within the word vector, so that strings like
"good" and "Good" are assigned the same bin, and separate bins can be allocated for tokens like
"rosa" and "Rosa" but not "Rosa!".

The NLP pipeline required to build a dialog engine, or chatbot, is similar to the pipeline required
to build a question answering system described in  (Manning, 2013).  However,Taming Text 54

some of the algorithms listed within the five subsystem blocks may be new to you. We help you
implement these in Python to accomplish various NLP tasks essential for most applications,
including chatbots.

1.9 A chatbot natural language pipeline
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1.  
2.  

3.  
4.  

Figure 1.7 Chatbot recirculating (recurrent) pipeline

A chatbot requires four kinds of processing as well as a database to maintain a memory of past
statements and responses. Each of the four processing stages can contain one or more processing
algorithms working in parallel or in series (see figure 1.4).

Parse—Extract features, structured numerical data, from natural language text.
Analyze—Generate and combine features by scoring text for sentiment, grammaticality,
semantics.
Generate—Compose possible responses using templates, search, or language models.
Execute—Plan statements based on conversation history and objectives, and select the
next response.

Each of these four stages can be implemented using one or more of the algorithms listed within
the corresponding boxes in the block diagram. We show you how to use Python to accomplish
near state-of-the-art performance for each of these processing steps. And we show you several
alternative approaches to implementing these five subsystems.

Most chatbots will contain elements of all five of these subsystems (the four processing stages as
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well as the database). But many applications require only simple algorithms for many of these
steps. Some chatbots are better at answering factual questions, and others are better at generating
lengthy, complex, convincingly human responses. Each of these capabilities require different
approaches; we show you techniques for both.

In addition, deep learning and data-driven programming (machine learning, or probabilistic
language modeling) have rapidly diversified the possible applications for NLP and chatbots. This
data-driven approach allows ever greater sophistication for an NLP pipeline by providing it with
greater and greater amounts of data in the domain you want to apply it to. And when a new
machine learning approach is discovered that makes even better use of this data, with more
efficient model generalization or regularization, then large jumps in capability are possible.

The NLP pipeline for a chatbot shown in figure 1.4 contains all the building blocks for most of
the NLP applications that we described at the start of this chapter. As in , we breakTaming Text
out our pipeline into four main subsystems or stages. In addition we have explicitly called out a
database to record data required for each of these stages and persist their configuration and
training sets over time. This can enable batch or online retraining of each of the stages as the
chatbot interacts with the world. In addition we have shown a "feedback loop" on our generated
text responses so that our responses can be processed using the same algorithms used to process
the user statements. The response "scores" or features can then be combined in an objective
function to evaluate and select the best possible response, depending on the chatbot’s plan or
goals for the dialog. This book is focused on configuring this NLP pipeline for a chatbot, but you
may also be able to see the analogy to the NLP problem of text retrieval or "search," perhaps the
most common NLP application. And our chatbot pipeline is certainly appropriate for the question
answering application that was the focus of .Taming Text

The application of this pipeline to financial forecasting or business analytics may not be so
obvious. But imagine the features generated by the analysis portion of your pipeline. These
features of your analysis or feature generation can be optimized for your particular finance or
business prediction. That way they can help you incorporate natural language data into a machine
learning pipeline for forecasting. Despite focusing on building a chatbot, this book gives you the
tools you need for a broad range of NLP applications, from search to financial forecasting.

One processing element in figure 1.4 that is not typically employed in search, forecasting, or
question answering systems is natural language . For chatbots this is their centralgeneration
feature. Nonetheless, the text generation step is often incorporated into a search engine NLP
application and can give such an engine a large competitive advantage. The ability to consolidate
or summarize search results is a winning feature for many popular search engines (DuckDuckGo,
Bing, and Google). And you can imagine how valuable it is for a financial forecasting engine to
be able to generate statements, tweets, or entire articles based on the business-actionable events it
detects in natural language streams from social media networks and news feeds.
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The next section shows how the layers of such a system can be combined to create greater
sophistication and capability at each stage of the NLP pipeline.

The stages of a natural language processing pipeline can be thought of as layers, like the layers in
a feed-forward neural network. Deep learning is all about creating more complex models and
behavior by adding additional processing layers to the conventional two-layer machine learning
model architecture of feature extraction followed by modeling. In chapter 5 we explain how
neural networks help spread the learning across layers by backpropagating model errors from the
output layers back to the input layers. But here we talk about the top layers and what can be done
by training each layer independently of the other layers.

Figure 1.8 Example layers for an NLP pipeline

The top four layers in figure 1.8 correspond to the first two stages in the chatbot pipeline (feature
extraction and feature analysis) in the previous section. For example the part-of-speech tagging
(POS tagging), is one way to generate features within the Analyze stage of our chatbot pipeline.
POS tags are generated automatically by the default  pipeline, which includes all the topSpaCY

four layers in this diagram. POS tagging is typically accomplished with a finite state transducer
like the methods in the  package.nltk.tag

1.10 Processing in depth
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The bottom two layers (Entity Relationships and a Knowledge Base) are used to populate a
database containing information (knowledge) about a particular domain. And the information
extracted from a particular statement or document using all six of these layers can then be used
in combination with that database to make inferences. Inferences are logical extrapolations from
a set of conditions detected in the environment, like the logic contained in the statement of a
chatbot user. This kind of "inference engine" in the deeper layers of this diagram are considered
the domain of artificial intelligence, where machines can make inferences about their world and
use those inferences to make logical decisions. However, chatbots can make reasonable decisions
without this knowledge database, using only the algorithms of the upper few layers. And these
decisions can combine to produce surprisingly human-like behaviors.

Over the next few chapters, we dive down through the top few layers of NLP. The top three
layers are all that is required to perform meaningful sentiment analysis and semantic search, and
to build human-mimicking chatbots. In fact, it’s possible to build a useful and interesting chatbot
using only a single layer of processing, using the text (character sequences) directly as the
features for a language model. A chatbot that only does string matching and search is capable of
participating in a reasonably convincing conversation, if given enough example statements and
responses.

For example, the open source project  simplifies this pipeline by merely computingChatterBot

the string "edit distance" (Levenshtein distance) between an input statement and the statements
recorded in its database. If its database of statement-response pairs contains a matching
statement, the corresponding reply (from a previously "learned" human or machine dialog) can
be reused as the reply to the latest user statement. For this pipeline, all that is required is step 3
(Generate) of our chatbot pipeline. And within this stage, only a brute force search algorithm is
required to find the best response. With this simple technique (no tokenization or feature
generation required),  can maintain a convincing conversion as the dialog engine forChatterBot

Salvius, a mechanical robot built from salvaged parts by Gunther Cox.55

Will is an open source Python chatbot framework by Steven Skoczen with a completely

different approach.   can only be trained to respond to statements by programming it with56 Will

regular expressions. This is the labor-intensive and data-light approach to NLP. This
grammar-based approach is especially effective for question answering systems and
task-execution assistant bots, like Lex, Siri, and Google Now. These kinds of systems overcome
the "brittleness" of regular expressions by employing "fuzzy regular expressions"footnote:[The
Python  package is backward compatible with  and adds fuzziness among other features.regex re

The  will replace the  package in future python versions (regex re

).https://pypi.python.org/pypi/regex

Similarly , or "approximate grep," ( ) is an alternativeTRE agrep https://github.com/laurikari/tre
to the UNIX command-line application ] and other techniques for finding approximategrep.
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grammar matches. Fuzzy regular expressions find the closest grammar matches among a list of
possible grammar rules (regular expressions) instead of exact matches by ignoring some
maximum number of insertion, deletion, and substitution errors. However, expanding the breadth
and complexity of behaviors for a pattern-matching chatbots requires a lot of difficult human
development work. Even the most advanced grammar-based chatbots, built and maintained by
some of the largest corporations on the planet (Google, Amazon, Apple, Microsoft), remain in
the middle of the pack for depth and breadth of chatbot IQ.

A lot of powerful things can be done with shallow NLP. And little, if any, human supervision
(labeling or curating of text) is required. Often a machine can be left to learn perpetually from its
environment (the stream of words it can pull from Twitter or some other source).  We show you57

how to do this in chapter 6.

Like human brainpower, the power of an NLP pipeline cannot be easily gauged with a single IQ
score without considering multiple "smarts" dimensions. A common way to measure the
capability of a robotic system is along the dimensions of complexity of behavior and degree of
human supervision required. But for a natural language processing pipeline, the goal is to build
systems that fully automate the processing of natural language, eliminating all human
supervision (once the model is trained and deployed). So a better pair of IQ dimensions should
capture the breadth and depth of the complexity of the natural language pipeline.

A consumer product chatbot or virtual assistant like Alexa or Allo is usually designed to have
extremely broad knowledge and capabilities. However, the logic used to respond to requests
tends to be shallow, often consisting of a set of trigger phrases that all produce the same response
with a single if-then decision branch. Alexa (and the underlying Lex engine) behave like a single
layer, flat tree of (if, elif, elif, …) statements.  Google Dialogflow (which was developed58

independently of Google’s Allo and Google Assistant) has similar capability to Amazon Lex,
Contact Flow, and Lambda, but without the drag-and-drop user interface for designing your
dialog tree.

On the other hand, the Google Translate pipeline (or any similar machine translation system)
relies on a deep tree of feature extractors, decision trees, and knowledge graphs connecting bits
of knowledge about the world. Sometimes these feature extractors, decision trees, and
knowledge graphs are explicitly programmed into the system, as in figure 1.5. Another approach
rapidly overtaking this "hand-coded" pipeline is the deep learning data-driven approach. Feature
extractors for deep neural networks are learned rather than hard-coded, but they often require
much more training data to achieve the same performance as intentionally designed algorithms.

You will use both approaches (neural networks and hand-coded algorithms) as you incrementally
build an NLP pipeline for a chatbot capable of conversing within a focused knowledge domain.

1.11 Natural language IQ
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This will give you the skills you need to accomplish the natural language processing tasks within
your industry or business domain. Along the way you will probably get ideas about how to
expand the breadth of things this NLP pipeline can do. Figure 1.6 puts the chatbot in its place
among the natural language processing systems that are already out there. Imagine the chatbots
you have interacted with. Where do you think they might fit on a plot like this? Have you
attempted to gauge their intelligence by probing them with difficult questions or something like
an IQ test?  you will get a chance to do exactly that in later chapters, to help you decide how59

your chatbot stacks up against some of the others in this diagram.

Figure 1.9 2D IQ of some natural language processing systems

As you progress through this book, you will be building the elements of a chatbot. Chatbots
require all the tools of NLP to work well:

Feature extraction (usually to produce a vector space model)
Information extraction to be able to answer factual questions
Semantic search to learn from previously recorded natural language text or dialog
Natural language generation to compose new, meaningful statements

Machine learning gives us a way to trick machines into behaving as if we had spent a lifetime
programming them with hundreds of complex regular expressions or algorithms. We can teach a
machine to respond to patterns similar to the patterns defined in regular expressions by merely
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2.  
3.  

4.  
5.  
6.  

7.  

providing it examples of user statements and the responses we want the chatbot to mimic. And
the "models" of language, the FSMs, produced by machine learning, are much better. They are
less picky about mispelings and typoz.

And machine learning NLP pipelines are easier to "program." We do not have to anticipate every
possible use of symbols in our language. We just have to feed the training pipeline with
examples of the phrases that match and example phrases that do not match. As long as we label
the example phrases during training, so that the chatbot knows which is which, it will learn to
discriminate between them. And there are even machine learning approaches that require little if
any "labeled" data.

We have given you some exciting reasons to learn about natural language processing. You want
to help save the world, do you not? And we have attempted to pique your interest with some
practical NLP applications that are revolutionizing the way we communicate, learn, do business,
and even think. It will not be long before you are able to build a system that approaches
human-like conversational behavior. And you should be able to see in upcoming chapters how to
train a chatbot or NLP pipeline with any domain knowledge that interests you—from finance and
sports to psychology and literature. If you can find a corpus of writing about it, then you can
train a machine to understand it.

This book is about using machine learning to build smart text reading machines without you
having to anticipate all the ways people can say things. Each chapter incrementally improves on
the basic NLP pipeline for the chatbot introduced in this chapter. As you learn the tools of
natural language processing, you will be building an NLP pipeline that can not only carry on a
conversation but help you accomplish your goals in business and in life.

Chapter 1 review questions

Here are some review questions for you to test your understanding:

Why is NLP considered to be a core enabling feature for AGI (human-like AI)?
Why do advanced NLP models tend to show significant discriminatory biases?
How is it possible to create a prosocial chatbot using training data from sources that
include antisocial examples?
What are 4 different approaches or architectures for building a chatbot?
How is NLP used within a search engine?
Write a regular expression to recognize your name and all the variations on its spelling
(including nicknames) that you’ve seen.
Write a regular expression to try to recognize a sentence boundary (usually a period ("."),
question mark "?", or exclamation mark "!")

1.12 Review
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