https://www.techtarget.com/searchdatamanagement/tutorial/The-evolution-of-MDM-architecture
In this excerpt from Master Data Management and Data Governance,
readers will learn about the evolution of master data management (MDM) architecture and gain
insight on how MDM architecture has changed over the years. Readers will also learn about MDM
architectural considerations and find an architectural definition of MDM.
Table of Contents
The evolution of MDM architecture
An
introduction to enterprise architecture framework and MDM patterns
MDM
and SOA: An introduction to SOA and the benefits of SOA
MDM
design, MDM deployment options and MDM hierarchy
Part II
Architectural Considerations
In the introductory part of this book, we offered a broad-brush description of the purpose, drivers, and key benefits of Master Data Management and used some specific examples of its customer-focused variant, Customer Data Integration. This part of the book discusses the issues of MDM architecture as a key logical step to building enterprise-wide solutions.
An architecture discussion is important for several reasons:
Thus, we organized this part of the book in the following fashion: First, we discuss the architectural genesis of MDM. Then, we take a closer look at the enterprise architecture framework and explain how this framework helps us to see different aspects of the solution as interconnected and interdependent views. This discussion is followed by an overview of traditional data management and emerging concerns of MDM architecture, MDM data modeling, data management architecture, and the newer concept of MDM services.
Chapter 4
MDM Architecture Classification, Concepts, Principles, and Components
In order to understand “how” to build a comprehensive Master Data Management solution, we need to define the “what” of Master Data Management.
We have already offered high-level definitions of MDM and its customer-focused variant, CDI, in Part I of this book. We also stated that CDI and other MDM variants share many architecture principles and approaches; therefore, in this part of the book we concentrate on common architecture aspects of Master Data Management. Where appropriate, we’ll mention specific architecture features of key MDM variants – in particular, customer data integration and Product Information Master.
Architectural Definition of Master Data Management
As shown in previous chapters, the scope of Master Data Management by its very nature is
extremely broad and applies equally well to customer-centric, product-centric, and reference
data–centric business problems, to name just a few. A common thread among the solutions to these
problems is the ability to create and maintain an accurate, timely, and authoritative “system of
record” for a given subject domain. Clearly, such a definition can be refined further for each
situation and problem domain addressed by Master Data Management.
Let’s start with a fresh look at the definitions of master data and Master Data Management offered in Chapter 1:
Interestingly, using this definition of “what” MDM is does not make our goal of creating architecture much easier to achieve. Indeed, this definition points to the fact that, for example, a CDI solution is much more than just a database of customer information, a solution known by many as a Customer Information File (CIF), a data warehouse of customer information, or an operational data store (ODS). In fact, this definition describes an enterprise-scale system that consists of software components, services, processes, data models and data stores, metadata repositories, applications, networks, and other infrastructure components.
Thus, in order to develop a clear understanding of the “how” of the MDM solution, we will review the historical roots of Master Data Management and its evolution from early attempts to deliver on the MDM promise to what it has become today.
Figure 4-1 MDM Customer/ Product Data Hub
Evolution of Master Data Management Architecture
As we discussed in Chapter 1, the need to create and maintain an accurate and timely
“information system of record” is not new, and it applies equally well to businesses and government
entities. Lately, a number of regulatory requirements, including the Sarbanes-Oxley Act, the Basel
II Capital Accord, and the emerging Basel III Accord (see the discussion on these regulations in
Part III of the book), have emphasized this need even further.
In the case of Customer Data Integration, organizations have been engaged in creating customer-centric business models and applications and enabling infrastructure for a long time. However, as the business complexity, number and type of customers (retail customers, individuals, institutional customers, and so on), number of lines of business, and number of sales and service channels continued to grow, this growth often proceeded in a tactical, nonintegrated fashion. As result, many organizations ended up with a wide variety of customer information stores and applications that manage customer data. As an example, one medium-sized service/distribution company maintained no less than eight customer databases that had to be rationalized and cleansed in order to achieve targeted goals for efficiency and quality of the customer service.
The customer data in that “legacy” environment was often incomplete and inconsistent across various data stores, applications, and lines of business. In many other cases, individual applications and lines of business were reasonably satisfied with the quality and scope of customer data they managed. However, the lack of completeness and accuracy and the lack of consistency across lines of business continued to prevent organizations from creating a complete and accurate view of customers and their relationships with the servicing organization and its partners.
Similarly, product information is often scattered across multiple systems. Products and services are modeled in product design and analysis systems where product functionality, bills of materials, packaging, pricing, and other characteristics are developed. Once the product modeling is complete, product information along with product-specific characteristics are released for cross-functional enterprise use.
Note: In the scope of MDM for customer domain, we often discuss business transformation to achieve customer centricity as a major goal and benefit of MDM. However, given the domain-agnostic nature of MDM, it is more accurate to talk about transforming the enterprise from an account-centric to an entity-centric model, and, where possible, we’ll be using the term “entity centricity” when discussing this transformational feature of MDM.
Recognizing the entity-centricity (e.g., customer, product) challenge and the resulting inability to transform the business from an account-centric to an entity-centric model, organizations first developed a variety of solutions that attempted to help move the organizations into the new entity-centric world. Although in general these solutions added some incremental value, many of them were deployed in the constraints of the existing lines of business, and very few were built with a true enterprise-wide focus in mind. Nevertheless, these solutions and attempts to achieve entity centricity have helped define MDM in general and CDI and PIM in particular to become a real enabler of such business model transformations. Therefore, we need to understand what has been done prior to the emergence of MDM, and what, if any, portions of the existing solutions can and should be leveraged in implementing MDM. The good news is that many of these solutions are not data-domain specific and can be viewed as foundational technologies for MDM in general.
These solutions include but are not limited to Customer Information File (CIF); Extract, Transform, and Load technologies (ETL); Enterprise Data Warehouse (EDW); an operational data store (ODS); data quality (DQ) technologies; Enterprise Information Integration (EII); Customer Relationship Management (CRM) systems; and Product Master environments, to name just a few. Although some of these solutions and technologies were discussed briefly in Chapter 1, we want to offer a slightly deeper and more architecture-focused review of them, with a view toward their suitability to act as components of a Master Data Management platform.
Although many ETL processes run in batch mode, best-in-class ETL tools can support near-real-time transformations and load functionality. Given that description, it is quite clear that an ETL component can and should be used to transform and load data into an MDM platform – Data Hub – both for the initial load and possibly for the incremental data updates that keep the Data Hub in sync with existing sources. We discuss MDM data synchronization approaches using ETL in Chapter 16 of the book.
Because EDW cleanses and rationalizes the data it manages in order to satisfy the needs of the consuming BI and CRM systems, an EDW becomes a good platform from which data should be loaded into the Data Hub.
Similar to the EDW, an ODS that contains customer or product data can and should be considered a valuable source of information for constructing an MDM solution.
Although data quality tools are especially effective when dealing with the name and address attributes of customer data records, they are also very useful for managing data quality in other data domains. Thus, data quality tools and technologies are key components of most Master Data Management solutions.
Some MDM implementations use EII technologies to provide users with a virtualized total view of a master data without creating a persistent physical image of the aggregation, thus providing additional data model flexibility for the target Data Hub.
An MDM system that is integrated with BOM management software can significantly enhance an integrated multidomain view of the master data. For example, a product characterized by BOM components can be integrated with suppliers’ component data.
More about this book and others like it...
14 Feb 2011