TechTarget.com/searchbusinessanalytics

https://www.techtarget.com/searchbusinessanalytics/definition/opinion-mining-sentiment-mining

What is sentiment analysis?

By Alexander S. Gillis

Sentiment analysis, also referred to as opinion mining, is an approach to natural language processing (NLP) that identifies the emotional tone behind a body of text. This is a popular way for organizations to determine and categorize opinions about a product, service or idea. Sentiment analysis involves the use of data mining, machine learning (ML), artificial intelligence (AI) and computational linguistics to mine text for sentiment and subjective information, such as whether it's expressing positive, negative or neutral feelings.

Sentiment analysis systems help organizations gather insights into real-time customer sentiment, customer experience and brand reputation. Generally, these tools use text analytics to analyze online sources, such as emails, blog posts, online reviews, customer support tickets, news articles, survey responses, case studies, web chats, tweets, forums and comments. Algorithms are used to implement rule-based, automatic or hybrid methods of scoring whether the customer is expressing positive, negative words or neutral words.

Sentiment analysis can also extract the polarity or the amount of positivity and negativity, as well as the subject and opinion holder within the text. This approach is used to analyze various parts of text, such as a full document or a paragraph, sentence or subsentence.

How does sentiment analysis work?

Sentiment analysis uses ML models and NLP to perform text analysis of human language. The metrics used are designed to detect whether the overall sentiment of a piece of text is positive, negative or neutral.

Sentiment analysis generally follows these steps:

  1. Collect data. The text being analyzed is identified and collected. This involves using a web scraping bot or a scraping application programming interface.
  2. Data preprocessing. In this stage, the data is processed to identify keywords that highlight the core meaning of the text. Other preprocessing steps include the following:
  1. Keyword analysis. ML and NLP algorithms automatically extract text features to identify negative or positive sentiment. ML approaches used include the bag-of-words technique that tracks the occurrence of words in text and the more nuanced word-embedding technique that uses neural networks to analyze words with similar meanings.
  2. Text scoring. A sentiment analysis tool scores the text using a rule-based, automatic or hybrid ML model. Rule-based systems perform sentiment analysis based on predefined, lexicon-based rules and are often used in domains such as law and medicine, where a high degree of precision and human control is needed. Automatic systems use ML and deep learning techniques to learn from data sets. A hybrid model combines both approaches and is generally considered the most accurate model. These models offer different approaches to assigning sentiment scores to pieces of text.
  3. Sentiment classification. Once a model is picked and used to analyze a piece of text, it assigns a sentiment score to the text, including positive, negative or neutral. Organizations can also decide to view the results of their analysis at different levels, including document level, which pertains mostly to professional reviews and coverage; sentence level for comments and customer reviews; and sub-sentence level, which identifies phrases or clauses within sentences.

Types of sentiment analysis

Sentiment analysis systems fall into the following categories:

Fine-grained sentiment analysis

breaks down sentiment indicators into more precise categories, such as very positive, positive, neutral, negative and very negative. This approach is like opinion ratings on a one-to-five scale. It's effective at grading customer satisfaction surveys. Other scaling methods include rating user sentiment from 0 to 100.

Emotion detection analysis

identifies emotions rather than positivity and negativity. Examples include happiness, frustration, shock, anger and sadness. This type of sentiment analysis is a more complex method, as it's more in-depth than just sorting words into categories.

Intent-based analysis

recognizes motivations behind a text in addition to opinion. For example, an online comment expressing frustration about changing a battery might carry the intent of getting the customer service team to reach out to resolve the issue. This type of sentiment analysis is typically useful for conducting market research.

Aspect-based sentiment analysis

examines whether the specific component is positively or negatively mentioned. For example, a customer might review a product saying the battery life was too short. The sentiment analysis system will note that the negative sentiment isn't about the product but about the battery life.

Why is sentiment analysis important?

Sentiment analysis is an important way for organizations to understand how customers perceive and experience their products and brands. Increasingly, customer opinions and feedback are given online through a variety of unconnected platforms, such as Amazon product reviews and posts on social media platforms.

Organizations typically don't have the time or resources to scour the internet to read and analyze every piece of data relating to their products, services and brand. Instead, they use sentiment analysis algorithms to automate this process and provide real-time feedback.

Organizations use this feedback to improve their products, services and customer experience. A proactive approach to incorporating sentiment analysis into product development can lead to improved customer loyalty and retention.

Sentiment analysis can also be used internally by organizations to automatically analyze employee feedback that quantifies and describes how employees feel about their organization. This is typically called employee sentiment analysis.

What is sentiment analysis used for?

Sentiment analysis tools are used in nearly every industry for a variety of applications, including the following:

There are many AI-powered sentiment analysis tools available with varying features and functionality. Some tools provide end-to-end customer service functionality that includes sentiment analysis whereas other tools offer specialized sentiment analysis and social listening capabilities. These tools can gauge how customers feel about a particular brand, product or service based on the emotion, tone and urgency exhibited in online conversations -- including social media, emails, chats and surveys.

Many tools enable an organization to easily build their own sentiment analysis model so they can more accurately gauge specific language pertinent to their specific business. Other tools let organizations monitor keywords related to their specific product, brand, competitors and overall industry. Most tools integrate with other tools, including customer support software. Businesses that use these tools to analyze sentiment can review customer feedback more regularly and proactively respond to changes of opinion within the market.

Benefits of sentiment analysis

The benefits of sentiment analysis include the following:

Challenges with sentiment analysis

Challenges associated with sentiment analysis typically include the following:

Machine learning techniques and technology underpin sentiment analysis models. Learn about other uses for machine learning applications in business.

28 Aug 2024

All Rights Reserved, Copyright 2010 - 2025, TechTarget | Read our Privacy Statement