Get started Bring yourself up to speed with our introductory content.

Industrial IoT design insights: Five factors to consider

IoT is becoming ubiquitous in all types of product categories, from consumer goods and medical products to commercial and industrial systems. Industrial IoT applications bring about unique challenges. Issues that are minor annoyances or problems in consumer products can cause abject product system failures in the industrial space. For industrial systems to succeed, designs need to be dependable and highly secure. With IIoT, downtime in mission-critical applications can’t be tolerated. Security breaches can cost millions of dollars and lost confidence by customers. And the technology is expanding rapidly: By 2020, global manufacturers are expected to invest $70 billion in IIoT, up from $29 billion in 2015. Here are a few critical things to be considered that are life-and-death in the industrial IoT space.

1. Connect or not?

Technology adds a cost layer to traditional non-tech-oriented products. In particular, adding sensing and communication technology can invoke both a nonrecurring and monthly recurring cost. While it is “de rigueur” these days to want to create new IoT products or add an IoT technology layer to existing products, it is important to understand the business case and value. Adding this layer involves embedding cost into the product with possible monthly subscription costs, as well as an initial and continuing stream of expenditures on product development and lifecycle support. While adopters in the consumer space may be willing to experiment with IoT technology with unclear long-term value, clear economic impact needs to be demonstrable in the industrial space. The costs of deployment are simply too high to allow for large-scale deployments of dubious utility.

2. Pick the right platform

When adding intelligence to a product that wasn’t connected before, many startups select hobbyist-grade boards. The trouble is that these developer platforms are not suitable for large-scale industrial-grade deployments. If the device proves successful and starts generating serious demand, production can’t scale because you can’t source thousands of that type of hobbyist board. Off-the-shelf platforms are useful for proofs of concept and as platforms for software developers, but do not confuse these POC systems with those that are production-ready. Any experienced hardware developer who has been creating industrial systems will know a development system lacks the reliability, security and durability required for mission-critical applications. You should only source components and modules for your product that will be available and appropriately costed now and in the future.

3. Pick the right communication platform

Today, developers are able to choose from a plethora of communication technologies for industrial IoT applications. There are a wide variety of wireless platforms to choose from in the cellular, Wi-Fi, Bluetooth and other major arenas — and there are subcategory options for each. The selection does not start with the radio. Rather, it ends with the radio. It starts with understanding the amount of data being acquired, the frequency of acquisition and communication, and where data is processed. These factors can then be balanced against things like the communications bandwidth, cost of storage and transmission, range and hardware cost. In developing a communication strategy, a bottom-up approach is required in order to avoid implementing the wrong wireless technology.

4. Security is job one

Security needs to be baked into your IoT product design process, not added on as an afterthought, particularly in the industrial space. The stories of hackers breaking into commercial systems through insecure connected devices are legendary. Security is a must-have, not simply a nice-to-have. The potential for a breach is enormous, and the results could be devastating. Bad guys often scan for poor or misconfigured security. Consider end-to-end security mechanisms, end-to-end data encryption, access and authorization control, and activity auditing. A security chain is only as strong as the weakest link. Low-end and poorly protected IoT endpoints are a frequent point of entry for attacks when they are not carefully and intentionally secured.

5. Get a top product development team

Oftentimes, engineering organizations in mature industrial spaces do not have the particular skills in-house to add an IoT layer to their product, even though their internal expertise may be more than up to the task of developing and sustaining the core product technology. Certainly, a company can embark on a campaign to recruit the talent for an internal team. However, in the current job market, the competition for such talent is fierce. It could take months or years to find and onboard an internal team. Many companies seek the assistance of an outside product development organization. By so doing, the company can get the best of both worlds. The combination of the internal team, with its core product and market knowledge, with an external team, with expertise in RF communications, cloud architectures, mobile applications, sensors and sensor integration can be extremely powerful.

While the prospects for industrial IoT deployments can be exciting, it is important to remember the basics as well. You need a sound business case, as with any investment. Solid project management is just as important as avoiding the above mistakes when shepherding a leading-edge technology device from inception to the manufacturing floor. Selecting the right engineers for the design team, who have technical as well as communications skills, is also critical to success. Finally, staying within budget parameters and meeting deadlines ensures the plan will be completed successfully, increasing the chances of the business’s success.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

Data Center
Data Management