P/E cycle

A solid-state-storage program-erase cycle is a sequence of events in which data is written to solid-state NAND flash memory cell (such as the type found in a so-called flash or thumb drive), then erased, and then rewritten. Program-erase (PE) cycles can serve as a criterion for quantifying the endurance of a flash storage device.

Flash memory devices are capable of a limited number of PE cycles because each cycle causes a small amount of physical damage to the medium. This damage accumulates over time, eventually rendering the device unusable. The number of PE cycles that a given device can sustain before problems become prohibitive varies with the type of technology. The least reliable technology is called multi-level cell (MLC). Enterprise-grade MLC (or E-MLC) offers an improvement over MLC; the most reliable technology is known as single-level cell (SLC).

Some disagreement exists in the literature as to the maximum number of PE cycles that each type of technology can execute while maintaining satisfactory performance. For MLC, typical maximum PE-cycle-per-block numbers range from 1500 to 10,000. For E-MLC, numbers range up to approximately 30,000 PE cycles per block. For SLC, devices can execute up to roughly 100,000 PE cycles per block.


See also: solid-state drive (SSD)nonvolatile memory

This was last updated in January 2012

Continue Reading About P/E cycle

Dig Deeper on Flash memory and storage