kalafoto - Fotolia

How do smart microgrids fit into IoT energy initiatives?

While there are management challenges associated with microgrids, IEEE senior member Shawn Chandler says IoT-driven grid management systems can help operators perform critical tasks.

A microgrid is a low-voltage distribution network composed of a variety of energy components, such as controllable energy loads and distributed energy resources.

Within the context of IoT, these systems turn into smart microgrids, which have remote management capabilities. These include controllable loads, such as heating, ventilation and air conditioning systems and electric vehicles, and DERs, such as photovoltaics, wind turbines, combined heat and power, fuel cells and energy storage systems.

The challenges of microgrid energy initiatives

By integrating DERs and controllable loads within the distribution network, the microgrid is capable of operating either in a grid-connected mode, i.e., it is connected to the power grid, or in an islanded mode, i.e., it is disconnected from the grid and uses various DERs to supply power to the loads. Such integration differentiates the microgrid from most conventional power systems given a potential for two-way power flow. In most grid systems, power flows from generation to loads. With a DER, it is possible to reverse this flow in the local grid and have local resources supplying power toward the higher voltage grid.

Microgrids also introduce new challenges to power management and control methods. An energy management system is responsible for management and control operations in traditional power systems, but with a smart microgrid, it is now necessary to advance the energy management system so as to cope with two-way power flows, safety of the grid and distributed resources under outage conditions, and maintenance activities.

Some stakeholders are finding it challenging to modify today's control methods and system tools quickly enough. That's because the conditions under which distribution grids operate are being radically modified by smart loads, distributed generation, inverse power flows, new digital prosumers, energy storage and operating the grid with less room for error. As DERs proliferate, it will be even more critical to have advanced grid operation tools to address power harmonics, voltage fluctuations and protection issues. If unmanaged, these resources can lead to grid instability and higher operating costs.

Benefits of microgrids and IoT

Active grid management systems need data from throughout the grid to do their job. This is where the value of IoT technologies comes in, making it easier to collect and analyze data from traditional grid resources, DERs and other electrical assets so utilities can more quickly take remedial action when warranted. With this data, IoT-driven grid management systems can help operations perform critical functions, including:

  • optimizing line voltage to minimize energy losses and line damage;
  • locating the source of sags, surges and outages;
  • improving load balancing, restoring services faster and making safer override decisions;
  • identifying the source of technical and nontechnical losses in the system, reducing the costs of service; and
  • lowering outage investigation times by isolating fault locations.

Have a question for one of our experts? Submit it now. All questions are anonymous.

Dig Deeper on IoT industry and vertical markets

Data Center
Data Management