Tech Accelerator

Enterprise 5G: Guide to planning, architecture and benefits

An enterprise 5G deployment requires extensive planning. Prepare for advances in wireless technology using this 5G guide that covers use cases, architecture integration and more.

5G, the latest generation of cellular technology, promises faster speeds, lower latency and greater capacity for multiple devices than its 4G predecessor. Already, 5G is capturing the attention of consumer cellular service customers, but enterprise adoption of emerging use cases is widely expected to be 5G's killer application.

In the coming years, enterprise use cases will outweigh consumer user cases, making it essential for organizations to thoroughly understand 5G's benefits and challenges now and to begin evaluating how the technology could affect the way they do business.

This enterprise 5G guide will explain in-depth how the cellular technology works, its architecture options, emerging use cases, how it compares to 4G and Wi-Fi 6, and more.

What is 5G?

5G is fifth-generation cellular technology that supports multigigabit data rates, likely exceeding traditional wireline network speeds. While 5G's potential speed of 20 Gbps is a significant draw, its low latency -- 1 millisecond or less -- is even more attractive for enterprise applications -- such as augmented reality, internet of things (IoT), location awareness and branch connectivity. With built-in security, 5G has the potential to be more secure than its cellular service predecessors.

How does 5G work?

5G uses a vast network of small cell stations located on light poles and building roofs, among other locations, to transmit signals via the millimeter wave spectrum (30 GHz to 300 GHz). With its shorter wavelength, a millimeter wave can only travel short distances and is susceptible to weather and obstacles, such as buildings, walls, coated windows and foliage. Millimeter wave technology works best in densely populated areas or open venues, such as in factories or stadiums, that can be blanketed with low-powered small cell stations to properly gain line of sight and boost radio signals.

Less dense areas also can take advantage of 5G but would have to use lower frequency bands -- for example, low-band and midband -- with the tradeoff being support for fewer devices at potentially lower speeds and greater latency. For now, many organizations are concentrating their enterprise 5G efforts in dense areas or open venues to take optimal advantage of 5G's capabilities.

The 3rd Generation Partnership Project (3GPP) is working on 5G standards -- such as 5G New Radio, a replacement for the Long Term Evolution (LTE) standard -- so enterprises need to pay close attention to its work. 5G New Radio supports the growth of wireless communication by enhancing electromagnetic radiation spectrum efficiency.

This new generation of cellular technology has its own lingo, so make sure to brush up on the 5G terms you need to know.

The differences between 5G and 4G

While 4G cellular service has been instrumental in powering the mobile workforce, 5G will likely be better known for improving enterprise operations.

4G LTE is limited by its spectrum, which only reaches to 6 GHz. 5G's millimeter wave operates between 30 GHz and 300 GHz, which means the wider channels can transmit more data. 4G's use of lower frequency bands impedes latency, speed and capacity, even though its signals can travel farther between radios or tall cell towers. Compared to 4G networks, 5G networks support up to 100 times more users and devices.

5G will require organizations to invest in new core infrastructure that includes base stations and antennas as well as onboard radios for devices and sensors. 5G's shorter travel distances also demand more infrastructure -- namely more small cell stations, which currently are the size of a pizza box, to get signals from one point to another without interference. 5G has brought about a whole new set of capabilities, including network slicing, which enables businesses to safely and cost-effectively share 5G connectivity.

4G vs. 5G: What's the difference?

Business benefits of enterprise 5G

Organizations have long wanted a flexible and secure connectivity option for the enterprise, and the features of 5G meet that need. As TechTarget contributor John Fruehe wrote, 5G will benefit businesses in five key ways:

  1. Increased speed and bandwidth make cellular technology a viable option to bring automation to branch offices.
  2. 5G services provide less costly and more flexible alternatives to MPLS and other dedicated lines primarily used for latency-sensitive applications.
  3. With increased density, 5G can support more users and devices connected in the same physical area without affecting availability.
  4. Estimates of power savings at 90% -- a significant cost reduction for IoT networks -- make 5G a compelling IoT use case, as some IoT devices could experience a 10-year remote battery life.
  5. Additional security features, including key management services, make 5G a more trusted option than 4G for IoT, branch and other enterprise traffic.

Providers, manufacturers and the U.S. government overall are working to make 5G a secure technology, which should assuage many concerns businesses have about vulnerabilities. For example, 5G's encryption has been boosted to 256-bit from 128-bit encryption used in 4G. Due to security concerns, some countries, including the U.S., have banned the use of equipment from untrusted China-based vendors.

5G features and benefits for businesses

5G architecture and features

5G architecture better supports machine-to-machine communication than its predecessors because it features the ability to transmit large data streams, supports real-time decision-making and fosters automation. Unsurprisingly, 5G supports cloud connectivity and relies more heavily on software programmability. 5G also is designed to be compatible with other wireless technologies, including 3G, 4G and Wi-Fi, touting management features that enable it to aggregate and orchestrate connectivity.

Private 5G network architecture

5G networks offer both public and private options, with large enterprises often preferring the private 5G option. While private networks can be more costly, as TechTarget site editor Jennifer English noted, they enable enterprises "to customize their 5G buildouts to meet application requirements, more finely manage infrastructure and secure data on premises."

TechTarget contributor Lee Badman recommended answering the following four questions to determine if private 5G networks are the correct choice for your enterprise:

  1. Do you need ubiquitous coverage for devices or a new type of wireless backhaul?
  2. 5G is often equated with fast speeds, but are you willing to trade in larger cells and lower frequencies for speeds that might not meet expectations?
  3. Will most of your traffic stay within your enterprise network or head out to the internet?
  4. What device types, capabilities and density will be involved?

Badman laid out a network design that includes small cell hardware and upstream connectivity to the LAN and emphasized that private 5G networks are not one size fits all.

Diagram of private 5G network architecture

5G and Wi-Fi 6

5G and Wi-Fi 6 (802.11ax) might look like competitors in the enterprise, but in many cases, they can peacefully coexist or even be integrated. For instance, Wi-Fi 6 would be better suited for congested spaces that have obstacles and little line of sight, while 5G would work well in open spaces that require high speeds and low latency. Seamless handoffs between Wi-Fi and 5G networks will mean the two technologies can be used together to support a growing remote workforce.

5G and Wi-Fi 6 both have powerful signal modulation, authentication and security features. Like 5G's attention to power consumption, Wi-Fi 6 has power-saving functions that can reduce the load on access points.

Typically, one main difference between cellular and Wi-Fi technology has been how they operate in licensed vs. unlicensed frequency bands, but 5G changes that. Experts warn that using 5G in an unlicensed band could create interference with Wi-Fi, so businesses need to be diligent in planning out their coverage.

Also, Wi-Fi lacks the mobility support necessary to facilitate sessions being transferred between access points. This comes into play if a company wants to track movement of products or robots in various Wi-Fi coverage areas, where 5G could handle those transfers with ease.

The differences between 5G and Wi-Fi 6

5G, IoT and edge computing

IoT and edge computing have distinct demands for high speed and low latency. In many cases, sensors are sending mission-critical information to edge devices or out to the cloud to be aggregated, analyzed and acted upon. For example, consider self-driving vehicles, assembly line equipment and city surveillance cameras that constantly send and receive data.

5G's low-power requirements extend battery life, making it a perfect match for IoT networks. This feature also enables enterprises to be innovative in their architecture designs, since they won't have to be tied to a power source.

Experts recommend enterprises use an application's requirements to select the best wireless connectivity option -- understanding that 5G might be overkill in meeting the application's demands.

5G and SD-WAN

Organizations can pair 5G and SD-WAN to manage wired and wireless connections to remote offices as well as home offices. For instance, one insurance firm deployed SD-WAN to proactively manage the cable, DSL, fiber and LTE links at its 10,000 sites. When 5G becomes widely available, 5G services could easily be added to that mix.

SD-WAN could also be useful in helping sites toggle between 4G and 5G connections, automatically selecting the appropriate link for the demands of the application and traffic conditions. Some industries, including retail, could employ SD-WAN to provision 5G as a primary option for pop-up locations, with secondary links via MPLS and broadband.

Skeptical about 5G? Read contributor Linda Rosencrance's article breaking down some of the myths surrounding 5G.

Enterprise 5G use cases

Use cases for enterprise 5G are expanding rapidly as businesses evaluate where the cellular technology could improve their operations. Below are five examples of 5G use cases:

  1. Retail. 5G fixed wireless can replace broadband connections, enabling faster connectivity and more flexible management. Using SD-WAN, companies could provision and manage hundreds of locations.
  2. Healthcare. The healthcare sector is using technology to make greater use of limited resources, including surgical staff. 5G's low latency will enable surgeons to operate remotely via robotic applications. Hospitals also plan to use 5G to transmit critical diagnostic data and images that can be shared among the ER, ambulances and the field to provide faster and more comprehensive care.
  3. Sports venues. Some sports organizations, including the National Hockey League and NASCAR, are deploying 5G to enrich the fan experience through real-time access to video highlights, such as instant replay and more immersive applications.
  4. Manufacturing. Companies can use 5G to speed connectivity from IoT sensors on machines to the cloud for more complex real-time analytics. The speed and low latency 5G provides means information extracted from the analytics can be put to use for real-time decision-making that could improve operations on the factory floor.
  5. Smart cities and autonomous vehicles. Again, the low latency and speed of 5G make it a prime candidate to innovate city management and transportation. Streetlights, signals and other public safety applications would benefit from the wireless technology, enabling changes in patterns based on real-time events or AI models. Autonomous vehicles also use AI, machine learning and analytics to process information in real time, such as automatically reducing speeds due to road conditions or increased traffic.
5G business use cases

5G enterprise challenges

For all of 5G's benefits, enterprises should carefully consider its challenges abandoning current wireless and wired infrastructure.

Network security concerns

The fact that 5G can simultaneously support more connected users and devices than previous cellular technology equates to many more vectors of exposure that need to be carefully assessed and monitored. Also, 5G requires far more infrastructure that must be protected from threats. Experts warn that hackers could use a 5G network to exploit existing vulnerabilities or to develop new modes of attack.


5G requires a hefty investment to reap its full reward. Network components will have to be swapped out with those that are 5G-compatible. Companies also will have to buy new wireless gear to ensure adequate coverage.

Signal interference

Perhaps more than any other wireless technology, 5G requires network teams to pay close attention to site surveys. The easiest use cases are venues with open spaces all under one roof. A site survey will reveal the extent of signal penetration challenges -- specially coated windows, walls, etc. -- and radio dead spots, as well as how much effort would be needed to mitigate them either with a facility redesign or additional equipment, such as antennas. TechTarget contributor Michael Finneran laid out the indoor coverage challenges that enterprises are likely to face with 5G.

Availability of 5G

5G is not yet widely available because most service providers are focused on rolling it out in densely populated areas, such as major metropolitan cities. Although use cases for agriculture and mining are plentiful in rural areas, deployment of 5G in those locations might not be cost-effective for carriers, which could delay its availability.

Companies that want to take full advantage of 5G enterprise-wide will have to see if the cellular technology has been launched at all of their locations.

Top 5G network security concerns

How to find partners and buy 5G

5G service is only as good as the devices and applications using it, so organizations should chart a roadmap for when enterprise equipment and applications will be available to support 5G. From that, they can create a timeline for procuring 5G services.

Businesses will have to decide whether to buy, lease or build a 5G network. With those three options, enterprises could buy public 5G services from a mobile operator, lease a 5G network slice or build a private 5G network. TechTarget contributor Tom Nolle recommended that teams draw up a list of providers that serve the business' primary market areas and then compare features and prices.

Enterprises that want to build their own private 5G network should partner with an integrator or service provider to help with some of the more nuanced aspects of 5G. For example, 5G can significantly increase traffic, so organizations must assess if other parts of the network, such as the VPN, can handle the load.

Enterprises that choose to build their own 5G networks should consider the following four factors:

  1. spectrum for the radio network;
  2. 5G infrastructure to provide the required features and interfaces;
  3. small cells or microcells to transmit and receive; and
  4. interconnected facilities to link the private 5G network to the public mobile network if required.

Nolle also advised companies on a procurement and deployment path to have an in-house staff member skilled in 5G to guide the evaluation of use cases and implementation.

Flow chart of enterprise 5G partnerships and roles

The future of enterprise 5G

Enterprise 5G is all about innovation and applications. What comes next depends greatly on how the U.S. -- which is currently gripped in a global 5G race with China and other countries -- takes advantage of 5G's speed, low latency and capacity to push AI, machine learning, real-time analytics and other advancements deeper into the enterprise.

Read more about what might happen with 5G in the coming years.

That said, the wireless industry is already working on 6G technology, which is expected to begin launching commercially in 2030 and will support data rates of 1 TB per second. 6G will build on 5G's capabilities for applications such as imaging, presence technology and location awareness. 6G technology will be able to selectively use different frequencies to measure electromagnetic absorption rates and adjust frequencies accordingly. Industries such as government, healthcare and transportation will benefit greatly from 6G.

Dig Deeper on Mobile and wireless network technology