Browse Definitions :
Definition

over sampling and under sampling

Over sampling and under sampling are techniques used in data mining and data analytics to modify unequal data classes to create balanced data sets. Over sampling and under sampling are also known as resampling.

These data analysis techniques are often used to be more representative of real world data. For example, data adjustments can be made in order to provide balanced training materials for AI and machine learning algorithms.

One area where over sampling and under sampling techniques are used is for survey research. A survey sample population may be unbalanced in terms of types of participants, which can deter the larger population that the survey is meant to study. By using over or under sampling, the ratios of surveyed characteristics, such as gender, age group and ethnicity, can used to make the weight of the data better representative of the group’s ratios within the greater populations.

Over sampling vs. under sampling

When one class of data is the underrepresented minority class in the data sample, over sampling techniques maybe used to duplicate these results for a more balanced amount of positive results in training. Over sampling is used when the amount of data collected is insufficient. A popular over sampling technique is SMOTE (Synthetic Minority Over-sampling Technique), which creates synthetic samples by randomly sampling the characteristics from occurrences in the minority class.

Conversely, if a class of data is the overrepresented majority class, under sampling may be used to balance it with the minority class. Under sampling is used when the amount of collected data is sufficient. Common methods of under sampling include cluster centroids and Tomek links, both of which target potential overlapping characteristics within the collected data sets to reduce the amount of majority data.

In both over sampling and under sampling, simple data duplication is rarely suggested. Generally, over sampling is preferable as under sampling can result in the loss of important data. Under sampling is suggested when the amount of data collected is larger than ideal and can help data mining tools to stay within the limits of what they can effectively process.

This was last updated in November 2018

Continue Reading About over sampling and under sampling

Networking
  • firewall as a service (FWaaS)

    Firewall as a service (FWaaS), also known as a cloud firewall, is a service that provides cloud-based network traffic analysis ...

  • private 5G

    Private 5G is a wireless network technology that delivers 5G cellular connectivity for private network use cases.

  • NFVi (network functions virtualization infrastructure)

    NFVi (network functions virtualization infrastructure) encompasses all of the networking hardware and software needed to support ...

Security
  • phishing

    Phishing is a fraudulent practice in which an attacker masquerades as a reputable entity or person in an email or other form of ...

  • computer forensics (cyber forensics)

    Computer forensics is the application of investigation and analysis techniques to gather and preserve evidence from a particular ...

  • cybersecurity

    Cybersecurity is the practice of protecting internet-connected systems such as hardware, software and data from cyberthreats.

CIO
HRSoftware
  • OKRs (Objectives and Key Results)

    OKRs (Objectives and Key Results) encourage companies to set, communicate and monitor organizational goals and results in an ...

  • cognitive diversity

    Cognitive diversity is the inclusion of people who have different styles of problem-solving and can offer unique perspectives ...

  • reference checking software

    Reference checking software is programming that automates the process of contacting and questioning the references of job ...

Customer Experience
  • martech (marketing technology)

    Martech (marketing technology) refers to the integration of software tools, platforms, and applications designed to streamline ...

  • transactional marketing

    Transactional marketing is a business strategy that focuses on single, point-of-sale transactions.

  • customer profiling

    Customer profiling is the detailed and systematic process of constructing a clear portrait of a company's ideal customer by ...

Close