Browse Definitions :

logical block addressing (LBA)

What is logical block addressing (LBA)?

Logical block addressing (LBA) is a technique to specify the addresses of blocks of data on a storage device, such as a hard disk drives (HDDs). It is one of the defining features of Enhanced IDE (EIDE), a hard disk interface to the computer bus or data paths.

LBA is a simple linear addressing scheme to specify the locations of data blocks in storage devices to find these blocks or specified pieces of data. The term refers both to the address and the block to which it refers. The LBA technique first emerged in the early 1990s to support ATA/IDE drives. Most HDDs released since then implement LBA.

The earliest single LBA was a 22-bit value that was part of the earlier IDE standard. In 1994, the ATA-1 standard allowed for a 28-bit LBA that mapped to a specific cylinder, head and sector (CHS) address on the hard disk. These 28 bits allowed sufficient variation to specify addresses on an HDD with larger data storage capacities. Initially, LBA managed a hard drive addressable space of up to 8.4 gigabytes (GB). Since the release of ATA-6 in 2003, 48-bit LBA has also been available, which increases the addressing limit to 248 × 512 bytes or approximately 144 petabytes (PB).

How logical block addressing addresses cylinder, head and sector challenges

LBA is an alternative to early addressing schemes in which the physical details of a storage device were exposed to the operating system (OS). One such scheme is cylinder-head-sector or CHS block addressing, which assigns a specific valid range to each item: 0 to 1,023 for cylinders, 0 to 254 for heads and 1 to 63 for sectors.

In CHS, the addresses of physical blocks of data or sectors on a disk are exposed and addressing is done by identifying individual blocks by their position in a track. The track itself is determined by the numbers of the head and cylinder. Thus, to address a hard drive, its C, H and S addresses must be specified. The main problem with this scheme was that it did not work well with devices other than HDDs and cannot be used with them.

LBA supports many types of devices, including HDDs and secondary devices like tape and network storage. In this scheme, storage drives and their blocks of data are accessed by a single unique sector number instead of referring to a cylinder, head and sector. Existing blocks are counted from 0 and the storage device is addressed as a single device by linearly addressing all sectors.

In LBA, data blocks are located by an integer index. The first block is addressed as LBA 0, the second as LBA 1 and so on. Thus, as long as it is supported by the computer's OS, BIOS and HDD, LBA provides a simple addressing method compared to CHS. Consequently, it is now the dominant form of hard disk addressing.

diagram of how logical block addressing works
Example of a hard disk formatted using logical block addressing where the sectors are the same size.

Abstraction in logical block addressing

In SCSI hard drives, the LBA scheme was introduced as an abstraction. In this scenario, the CHS addresses of blocks of data on the hard disk are not exposed to the device driver, OS, file system code or applications that need to access the HDD. Any system calls that require block-level I/O pass the LBA definitions – for example, LBA 0 or LBA 1 -- to the device driver.

CHS to LBA mapping and conversion

Prior to 1996, many HDDs did not support LBA addressing, so they implemented a CHS translation or mapping scheme in the BIOS disk I/O routines. One scheme was the large method in which 16:4:8-bit ATA cylinders and heads would be remapped to other schemes used by disk access routines (e.g., INT 13h) to generate virtual drive heads and increase the practical limit of the drive.

However, this method creates portability problems since HDDs with a BIOS from one vendor cannot be read on a computer with a BIOS from a different vendor due to incompatible translation methods. One way to overcome this incompatibility problem is to use conversion software that replaces the normal routines at boot time with custom code, which enables LBA support for computers with non LBA-compliant BIOS.

In LBA, sector numbering starts with the first cylinder, first head and track's first sector. When the track -- the circular strips of sectors on the storage device -- is exhausted, numbering continues to the second head of the first cylinder. Once all 254 heads of the first cylinder are exhausted, numbering moves to the second cylinder, first head, track's first sector and so on.

In CHS, the combination of C, H and S is called a tuple. Also, use the following formula to determine local block addressing (i.e., a tuple):

LBA = sectors per head * current head + current sector number

When mapping CHS tuples to LBA addresses, the following equation comes into play:

LBA = (C x HPC) + H) x SPH + (S – 1)

In the above equation, C is equal to the cylinder number, HPC is the heads per cylinder, H is the head number, SPH is the sector per head and S is equal to the sector number.

Discover technologies and techniques to ease your data storage burden.

This was last updated in June 2023

Continue Reading About logical block addressing (LBA)

  • SD-WAN security

    SD-WAN security refers to the practices, protocols and technologies protecting data and resources transmitted across ...

  • net neutrality

    Net neutrality is the concept of an open, equal internet for everyone, regardless of content consumed or the device, application ...

  • network scanning

    Network scanning is a procedure for identifying active devices on a network by employing a feature or features in the network ...

  • virtual firewall

    A virtual firewall is a firewall device or service that provides network traffic filtering and monitoring for virtual machines (...

  • cloud penetration testing

    Cloud penetration testing is a tactic an organization uses to assess its cloud security effectiveness by attempting to evade its ...

  • cloud workload protection platform (CWPP)

    A cloud workload protection platform (CWPP) is a security tool designed to protect workloads that run on premises, in the cloud ...

  • Regulation SCI (Regulation Systems Compliance and Integrity)

    Regulation SCI (Regulation Systems Compliance and Integrity) is a set of rules adopted by the U.S. Securities and Exchange ...

  • strategic management

    Strategic management is the ongoing planning, monitoring, analysis and assessment of all necessities an organization needs to ...

  • IT budget

    IT budget is the amount of money spent on an organization's information technology systems and services. It includes compensation...

  • ADP Mobile Solutions

    ADP Mobile Solutions is a self-service mobile app that enables employees to access work records such as pay, schedules, timecards...

  • director of employee engagement

    Director of employee engagement is one of the job titles for a human resources (HR) manager who is responsible for an ...

  • digital HR

    Digital HR is the digital transformation of HR services and processes through the use of social, mobile, analytics and cloud (...

Customer Experience
  • chatbot

    A chatbot is a software or computer program that simulates human conversation or "chatter" through text or voice interactions.

  • martech (marketing technology)

    Martech (marketing technology) refers to the integration of software tools, platforms, and applications designed to streamline ...

  • transactional marketing

    Transactional marketing is a business strategy that focuses on single, point-of-sale transactions.