Browse Definitions :

10 top data architect and data engineer certifications in 2023

Learn what it takes to achieve and accelerate a rewarding career in data architecture and choose from among some of the best data architect and data engineer certifications.

Professional certifications can help people pursuing jobs as data architects and engineers jump-start or accelerate their careers as well as get a leg up on the competition. These certifications measure a person's knowledge and skills against vendor and industry benchmarks to show potential employers that the individual has the necessary expertise to be successful and participate in developing and fulfilling enterprise data strategies.

Certifications indicate that current data architects and data engineers are taking a proactive approach to their careers. Because certified professionals are assets to any organization, certifications give enterprises the incentives to retain those employees, typically with promotions or raises.

Following is a list of some of the top data architect and data engineer certifications:

1. IBM Certified Solution Architect -- Data Warehouse V1

This certification covers the planning, designing, building, governing and securing of a data warehouse with minimal help from support, documentation and subject matter experts. Individuals must pass an exam consisting of seven sections and a total of 62 questions (42 correct answers are required to pass). Individuals must also demonstrate that they understand the concepts and architectural principles of data warehouses, can analyze a customer's business requirements and processes, and can build data models for a data warehouse.

Who should take this course: Data architects, developers, IBM internal employers, business partners and independent consultants selling IBM products.

Course details

2. IBM Certified Solution Architect -- Cloud Pak for Data v4.x

This certification validates that a person can design, plan and build a data and AI tool in a hybrid cloud environment. This certified architect leads and guides the tasks related to implementation and configuration of the tool, which might include data governance, data science, AI and machine learning. Individuals must pass an exam consisting of six sections and a total of 63 questions (42 correct answers are required to pass).

Who should take this course: Big data analysts and big data experts.

Course details

Graphic showing the key steps in the data modeling process
Creating a data model involves several steps, including identifying all the entities and their connections.

3. Data Science Council of America (DASCA) Associate Big Data Engineer (ABDE)

This certification confirms that individuals are proficient in using vendor-neutral and cross-platform tools, languages and techniques in engineering as well as in developing big data analytics applications. This certification helps people get into analytics application development, data science and big data engineering. Candidates select one of three tracks that fit their work and education backgrounds. They should understand the basics of programming and have hands-on experience with tools such as Core Java and an understanding of Linux environments and databases.

Who should take this course: Software engineers, individuals working in information technology, individuals with bachelor's degrees in information technology, computer science or software engineering.

Course details

4. Google Professional Data Engineer

This certification exam determines whether an individual can design, build, deploy, secure and monitor data processing systems. It also assesses the ability to use, deploy and continuously train existing machine learning models. Each candidate must pass a two-hour exam that includes multiple-select and multiple-choice questions. There are no prerequisites for this exam, but Google recommends at least three years of industry experience, including at least one year designing and managing tools using Google Cloud Platform.

Who should take this course: Data scientists, data engineers, data architects, DevOps engineers and machine learning professionals.

Course details

5. AWS Certified Data Analytics -- Specialty

This certification confirms an individual's technical skills and experience with AWS services to help build and manage analytics operations. It also determines if an individual can define AWS data analytics services, as well as recognize how they integrate with each other. In addition, individuals must know how AWS data analytics services work in conjunction with the data lifecycle of collecting, storing, processing and visualization. To take this exam, an individual should have at least five years of practical experience with data analytics technologies and worked two years with AWS services. This exam is 180 minutes long and made up of 65 multiple-choice or multiple-response questions.

Who should take this course: Data platform engineers, data architects, data scientists and data analysts.

Course details

6. Cloudera Certified Professional (CCP) Data Engineer

This certification helps validate an individual's skills in performing critical task in the Cloudera CDH (Cloudera Distribution of Hadoop) environment. The data engineering skills that the examination tests include data ingest, transformation, staging, storage and data analysis workflows. In addition to having hands-on experience in the field, candidates should first take Cloudera's Spark and Hadoop Developer training course. The exam has a 240-minute time limit in which applicants need to implement solutions in a CDH test cluster to meet certain use case requirements.

Who should take this course: Data scientists, data engineers, data analysts and project managers.

Course details

7. Microsoft Certified: Azure Data Engineer Associate

An individual pursuing this certification should be a subject matter expert in integrating, converting and consolidating data from unstructured and structured data systems into structures that can be used to build analytics tools. This certification demonstrates that an individual can design, develop, implement, monitor and optimize data storage, data processing and data security and uses various Azure data services and languages to store and produce cleansed and enhanced data sets for analysis. The certification requires substantial knowledge of such data processing languages as Python, SQL or Scala, an understanding of parallel processing and data architecture patterns and passing Exam DP-203: Data Engineering on Microsoft Azure.

Who should take this course: Data engineers, data architects, IT professionals, database administrators and business intelligence professionals.

Course details

8. Arcitura Certified Big Data Architect (BDSCP)

The Big Data Architect track consists of the several Big Data Science Certified Professional (BDSCP) modules: Fundamental Big Data, Big Data Analysis & Technology Concepts, Fundamental Big Data Architecture, Advanced Big Data Architecture and Big Data Architecture Lab. The last module is a series of lab exercises that require individuals to apply what they've learned in the previous courses to fulfill the requirements of the project and solve real-world problems. Earning this certification demonstrates that an individual can design, implement and integrate big data tools on premises or in the cloud. The full examination for the BDSCP is 170 minutes long.

Who should take this course: Data scientists, data analysts, data engineers, data managers and IT professionals.

Course details

9. Snowpro Advanced: Data Scientist

Snowflake is among the most widely used cloud data platforms, and this certification is designed to test individuals' knowledge and skills with the platform. Validated skills include an understanding of data pipelines, data preparation, feature engineering, model development and deployment. Applicants should have two or more years' experience using Snowflake for enterprise data science use cases. The exam has a 115-minute time limit and consists of 65 multiple-choice questions.

Who should take this course: Data scientists, data analysts, data engineers, data managers and IT professionals who are building data technology on the Snowflake Data Cloud.

Course details

10. Databricks Certified Data Engineer Professional

Databricks is among the pioneers of the concept of the data lakehouse with its open source Delta Lake technology. This certification validates an individual's knowledge and expertise with data engineering tasks such as Delta Lake use and deployment, and the ability to build data pipelines. An understanding of Apache Spark, as well as use of the Databricks platform for data analytics and machine learning are also key requirements. The exam has a 120-minute time limit and is made up of 60 multiple-choice questions.

Who should take this course: Data scientists, data analysts, data engineers, data managers and IT professionals who are building data technology on the Databricks platform.

Course details

Next Steps

The top 6 use cases for a data fabric architecture

Data architecture vs. information architecture: How they differ

Dig Deeper on Certifications

Networking
  • SD-WAN security

    SD-WAN security refers to the practices, protocols and technologies protecting data and resources transmitted across ...

  • net neutrality

    Net neutrality is the concept of an open, equal internet for everyone, regardless of content consumed or the device, application ...

  • network scanning

    Network scanning is a procedure for identifying active devices on a network by employing a feature or features in the network ...

Security
  • virtual firewall

    A virtual firewall is a firewall device or service that provides network traffic filtering and monitoring for virtual machines (...

  • cloud penetration testing

    Cloud penetration testing is a tactic an organization uses to assess its cloud security effectiveness by attempting to evade its ...

  • cloud workload protection platform (CWPP)

    A cloud workload protection platform (CWPP) is a security tool designed to protect workloads that run on premises, in the cloud ...

CIO
  • Regulation SCI (Regulation Systems Compliance and Integrity)

    Regulation SCI (Regulation Systems Compliance and Integrity) is a set of rules adopted by the U.S. Securities and Exchange ...

  • strategic management

    Strategic management is the ongoing planning, monitoring, analysis and assessment of all necessities an organization needs to ...

  • IT budget

    IT budget is the amount of money spent on an organization's information technology systems and services. It includes compensation...

HRSoftware
  • ADP Mobile Solutions

    ADP Mobile Solutions is a self-service mobile app that enables employees to access work records such as pay, schedules, timecards...

  • director of employee engagement

    Director of employee engagement is one of the job titles for a human resources (HR) manager who is responsible for an ...

  • digital HR

    Digital HR is the digital transformation of HR services and processes through the use of social, mobile, analytics and cloud (...

Customer Experience
  • chatbot

    A chatbot is a software or computer program that simulates human conversation or "chatter" through text or voice interactions.

  • martech (marketing technology)

    Martech (marketing technology) refers to the integration of software tools, platforms, and applications designed to streamline ...

  • transactional marketing

    Transactional marketing is a business strategy that focuses on single, point-of-sale transactions.

Close