Browse Definitions :
Definition

microfarad

What is a microfarad?

The microfarad -- symbolized as µF using the Greek symbol mu -- is a unit of capacitance, equivalent to 0.000001 or 10-6 farad (F). The microfarad is a moderate unit of capacitance. In utility alternating current (AC) and audio frequency circuits, capacitors with values on the order of 1 µF or more are common.

In the field of electronics, capacitance is the ability of a component to collect and store energy as an electrical charge. The components used for such energy storage are called capacitors. Capacitors are often called condensers in aviation, marine and automotive circuitry.

How do capacitors work?

A capacitor's ability to store energy is similar to a battery. However, a capacitor can charge and discharge its stored energy faster than a battery and typically stores far smaller amounts of energy than a battery.

A capacitor is fundamentally two metal plates separated by air or some other dielectric or insulating material. An electrical charge is formed when a voltage is applied between the two plates of a capacitor. The capacitor will retain this charge until the surrounding circuitry calls for the energy.

The size of the metal plates, the distance between the plates and the dielectric material between them determine the capacitance of a capacitor. These factors result in countless different capacitor shapes, sizes and capacities for varied uses and applications.

Capacitors are typically used to block direct current (DC) while allowing AC to flow. Consequently, they're common components wherever electrical signals must be shaped or manipulated, such as power supplies where AC is converted into DC and radio circuits where radio frequency signals must be isolated through tuning.

What is a microfarad used for?

Capacitors designed on the microfarad scale are used in circuits that operate at relatively low frequencies, such as power supplies and circuits that handle signals in the audio frequency range. Circuits that operate at higher frequencies, such as radio frequencies and higher, will use far smaller capacitors with capacities in the picofarad range and smaller.

Circuits that operate at lower frequencies or that must deliver significant amounts of energy for industrial tasks, such as delivering energy to start a motor, handle large voltages. They support thousands of microfarads, sometimes approaching 1 millifarad.

How does a microfarad compare with a farad?

The base measure of the farad was named for 19th-century English physicist Michael Faraday. The scientific notion of electrical charge is based on the concept of a coulomb (C), which is the amount of electricity that 1 ampere (A) of current can carry in 1 second (s). A coulomb is expressed as the following formula:

C = A*s

A farad is generally defined as the ability of a device to store 1 coulomb per volt (V). A farad is expressed using the following two formulas:

F = C/V

or

(A*s)/V

In practice, a farad represents a significant amount of capacitance, and capacitors built to store farads of charge can be too large and unwieldy for use in modern electronic circuits. Electronic circuitry requires a small fraction of a farad, and capacitors are often tiny components designed and built to store minuscule amounts of energy.

Table showing how microfarad, picofarad and nanofarad compare.
How a microfarad compares with a picofarad and a nanofarad.

This is why microfarads are important. A microfarad is one-millionth of a farad. It would take 1 million capacitors, each storing 1 microfarad, to store the equivalent energy in 1 farad.

What is the difference between a microfarad, nanofarad and picofarad?

The amount of capacitance needed for most modern electronic circuits is extremely small. Where a microfarad provides 0.000001 farad of capacitance, much smaller measures of capacitance are employed for more delicate circuits that operate at far higher frequencies.

These include the following:

  • Nanofarad (nF) -- 0.000000001 or one-billionth or 10-9 farad.
  • Picofarad (pF) -- 0.000000000001 or one-trillionth or 10-12 farad.

Capacitors far smaller than the picofarad scale exist. However, they're rarely practical because they're indistinguishable from naturally occurring or parasitic capacitance present in the printed circuitry used to build modern electronic devices. Such devices would be measured on the scale of femtofarads (10-15 farad) and are more theoretical than practical. Still, even smaller capacitance can be measured accurately down into the attofarad (10-18 farad) range.

How do you convert microfarad to another capacitance unit?

The capacitance metric uses a linear scale with straightforward designations based on powers of 10. What follows is a table of various units of capacitance and their farad equivalents.

Capacitance unit Farad equivalent
1 gigafarad (GF) 1,000,000,000 (109) farad
1 megafarad (MF) 1,000,000 (106) farad
1 kilofarad (kF) 1,000 (103) farad
1 farad (F) 1.0 farad
1 millifarad (mF) 0.001 (10-3) farad
1 microfarad (µF) 0.000001 (10-6) farad
1 nanofarad (nF) 0.000000001 (10-9) farad
1 picofarad (pF) 0.000000000001 (10-12) farad
1 femtofarad (fF) 0.000000000000001 (10-15) farad
1 attofarad (aF) 0.000000000000000001 (10-18) farad

Larger units of capacitance -- sometimes also called supercapacitors -- are devices providing more than 1 farad. Larger capacitors aren't used in delicate electronic circuitry. Instead, they replace batteries where large amounts of energy must be provided quickly, such as a motor starter. They're also used to drive high-energy industrial devices.

Converting between units of capacitance is a matter of moving the decimal point in the appropriate direction. For example, a nanofarad is a smaller unit of measurement than a microfarad. To convert 1 microfarad to nanofarads involves moving the decimal three places to the right, the equivalent of multiplying by 1,000:

1 µF = 1,000 nF

Conversely, expressing a capacitor in a larger unit of measure involves moving the decimal place to the left. For example, denoting a 1 µF capacitor in millifarads would require moving the decimal three places to the left, or multiplying by 0.001:

1 µF = 0.001 mF

There are numerous charts and conversion calculators available on the internet that can help streamline the conversion process between various capacitance units.

Microfarads and farads are one small part of data center efficiency. Find out more about building an efficient data center.

This was last updated in June 2023

Continue Reading About microfarad

Networking
  • SD-WAN security

    SD-WAN security refers to the practices, protocols and technologies protecting data and resources transmitted across ...

  • net neutrality

    Net neutrality is the concept of an open, equal internet for everyone, regardless of content consumed or the device, application ...

  • network scanning

    Network scanning is a procedure for identifying active devices on a network by employing a feature or features in the network ...

Security
  • virtual firewall

    A virtual firewall is a firewall device or service that provides network traffic filtering and monitoring for virtual machines (...

  • cloud penetration testing

    Cloud penetration testing is a tactic an organization uses to assess its cloud security effectiveness by attempting to evade its ...

  • cloud workload protection platform (CWPP)

    A cloud workload protection platform (CWPP) is a security tool designed to protect workloads that run on premises, in the cloud ...

CIO
  • Regulation SCI (Regulation Systems Compliance and Integrity)

    Regulation SCI (Regulation Systems Compliance and Integrity) is a set of rules adopted by the U.S. Securities and Exchange ...

  • strategic management

    Strategic management is the ongoing planning, monitoring, analysis and assessment of all necessities an organization needs to ...

  • IT budget

    IT budget is the amount of money spent on an organization's information technology systems and services. It includes compensation...

HRSoftware
  • ADP Mobile Solutions

    ADP Mobile Solutions is a self-service mobile app that enables employees to access work records such as pay, schedules, timecards...

  • director of employee engagement

    Director of employee engagement is one of the job titles for a human resources (HR) manager who is responsible for an ...

  • digital HR

    Digital HR is the digital transformation of HR services and processes through the use of social, mobile, analytics and cloud (...

Customer Experience
  • chatbot

    A chatbot is a software or computer program that simulates human conversation or "chatter" through text or voice interactions.

  • martech (marketing technology)

    Martech (marketing technology) refers to the integration of software tools, platforms, and applications designed to streamline ...

  • transactional marketing

    Transactional marketing is a business strategy that focuses on single, point-of-sale transactions.

Close