Browse Definitions :

power factor correction (PFC)

What is power factor correction (PFC)?

Power factor correction (PFC) is the set of mechanisms built into a power supply circuit to raise the power factor (PF). PFC is commonly incorporated into computer power supplies to increase their PF. A circuit's PF is the ratio of real power to apparent power. The higher the PF, the more efficiently that the electrical current is being used.

There are three types of power in an electric circuit:

  1. Real power (P). Real power is the amount of usable energy that can be transferred to a load. It is typically a percentage of the total amount of available power. If the load is entirely resistive, all power is considered real power, although this is rarely the case. Real power, which is measured in watts (W), is also referred to as active power, true power or usable power.
  2. Reactive power (Q). This is power that operates at right angles to real power. It is used to generate and maintain magnetic fields in reactive components, such as inductors or capacitors. Reactive power does not go into the load like real power and is instead pumped back to the grid, where it can impact power quality. Ideally, a circuit's load should have a low amount of reactive power to maximize energy efficiency and reduce energy costs and waste. Reactive power is measured in volt-ampere reactive.
  3. Apparent power (S). This is the combination of real and reactive power, measured in volt-ampere (VA). It is the full amount of energy a circuit consumed. Electric companies charge for power based on this amount, even though the circuit consumes only the real power.
diagram showing how real, reactive and apparent power fit together
Figure 1. How real, reactive and apparent power fit together

Figure 1 provides a conceptual overview of how real, reactive and apparent power fit together; it shows how apparent power is composed of both real power and reactive power. For most of today's circuits, the goal is to minimize the amount of reactive power in the circuit's load so it is only a small percentage of the overall apparent power.

This ratio between real and apparent power can be used to calculate a circuit's PF. Because real power is a portion of apparent power, you can divide the real power (W) by the apparent power (VA) to determine the PF:

Power factor = real power / apparent power

The PF value is always between 0 and 1. Most circuits aim for a PF greater than 0.9. A standard power supply has a PF of 0.70-0.75, but a power supply with PFC has a power factor of 0.95-0.99. Many countries now regulate the acceptable PF in most circuits.

diagram mapping relationship of real, reactive and apparent power
Figure 2. Mapping the relationship of real, reactive and apparent power

The relationship among real, reactive and apparent power can also be represented as a right triangle, with the real and reactive sides forming the right angle, as shown in Figure 2. The 90-degree angle between real power and reactive power is indicated by the rectangle. The angle between real power and apparent power is indicated by the curved arrow and the Greek letter phi (Ф).

The triangle points to another method for determining a circuit's PF. With this approach, you need only find the cosine of the angle between real power and apparent power:

Power factor = cos(Ф)

Manufacturers commonly incorporate PFC into their circuits to increase the PF, using different techniques in their circuits. Two of the most common techniques are passive and active:

  1. Passive PFC. This approach uses passive filtering to remove the harmonics, thereby increasing the PF. Passive PFC is inexpensive and simple to implement, but the components can be heavy and bulky. It is also limited to low-power applications.
  2. Active PFC. This approach modulates the waveforms to reduce the reactive power. The components are smaller and lighter than passive PFC and more efficient. They can also deliver a higher PF and handle a greater range of input voltages. However, this approach costs more and is more complex to implement. Active PFC supports both single-phase and three-phase systems.

PFC is not used solely for power supplies. In other industries, PFC mechanisms help to reduce the reactive power produced by fluorescent and high bay lighting, arc furnaces, induction welders and equipment that uses electrical motors. Energy efficiency is increasingly important for organizations pursuing green computing as part of their efforts to fulfill the goals of environmental, social and governance initiatives.

Building lighting, as well as heating and cooling systems, are important factors in data center energy efficiency. Other considerations include server efficiency, computer cooling systems and many aspects of building construction, including doors and windows.

A diagram showing energy-efficient approaches in a data center
There are many ways to increase energy efficiency in data centers.

Learn about green computing best practices and how to put them into practice.

This was last updated in August 2023

Continue Reading About power factor correction (PFC)

  • subnet (subnetwork)

    A subnet, or subnetwork, is a segmented piece of a larger network. More specifically, subnets are a logical partition of an IP ...

  • Transmission Control Protocol (TCP)

    Transmission Control Protocol (TCP) is a standard protocol on the internet that ensures the reliable transmission of data between...

  • secure access service edge (SASE)

    Secure access service edge (SASE), pronounced sassy, is a cloud architecture model that bundles together network and cloud-native...

  • intrusion detection system (IDS)

    An intrusion detection system monitors (IDS) network traffic for suspicious activity and sends alerts when such activity is ...

  • cyber attack

    A cyber attack is any malicious attempt to gain unauthorized access to a computer, computing system or computer network with the ...

  • digital signature

    A digital signature is a mathematical technique used to validate the authenticity and integrity of a digital document, message or...

  • What is data privacy?

    Data privacy, also called information privacy, is an aspect of data protection that addresses the proper storage, access, ...

  • product development (new product development)

    Product development -- also called new product management -- is a series of steps that includes the conceptualization, design, ...

  • innovation culture

    Innovation culture is the work environment that leaders cultivate to nurture unorthodox thinking and its application.

  • organizational network analysis (ONA)

    Organizational network analysis (ONA) is a quantitative method for modeling and analyzing how communications, information, ...

  • HireVue

    HireVue is an enterprise video interviewing technology provider of a platform that lets recruiters and hiring managers screen ...

  • Human Resource Certification Institute (HRCI)

    Human Resource Certification Institute (HRCI) is a U.S.-based credentialing organization offering certifications to HR ...

Customer Experience
  • What is an outbound call?

    An outbound call is one initiated by a contact center agent to prospective customers and focuses on sales, lead generation, ...

  • What is lead-to-revenue management (L2RM)?

    Lead-to-revenue management (L2RM) is a set of sales and marketing methods focusing on generating revenue throughout the customer ...

  • What is relationship marketing?

    Relationship marketing is a facet of customer relationship management (CRM) that focuses on customer loyalty and long-term ...