Browse Definitions :
Definition

augmented analytics

Augmented analytics is the use of machine learning (ML) and natural language processing (NLP) to enhance data analytics, data sharing and business intelligence. The concept of augmented intelligence, an overarching concept to augmented analytics, was introduced by the research firm Gartner, in their 2017 edition of the "Hype Cycle for Emerging Technologies."

Data analytics software can integrate augmented analytics tools to handle large data sets. Organizations can enter in raw data source information to these platforms that will then scrub, parse and return key data for analysis. The use of machine learning and NLP gives augmented analytics tools the ability to understand and interact with data organically as well as notice valuable or unusual trends.

The data analytics field is complex and generally requires a data scientist to extract any value from big data. This complexity is in part due to the fact that data must be gathered from a number of disparate sources, such as web analytics, marketing releases and social media posts. Collecting the data is just the first step, it also has to be prepared for analysis by being organized and refined before the analyst or data scientist can glean useful insights. The results must then be communicated to the organization along with action plans to capitalize on these insights.

Due to the manual effort required for these tasks, data scientists are currently in high demand and can be impractically expensive for some businesses. It is estimated that a data scientist can spend as much as 80% of their time gathering, preparing and cleaning up data. This is where augmented analytics can be implemented. With the addition of machine learning to data analytics, many of the time-consuming tasks of data collection and preparation can be done quickly, automatically and with fewer errors. As a result, data scientists could spend more time searching for actionable insights.

This was last updated in November 2018

Continue Reading About augmented analytics

Networking
Security
  • Mitre ATT&CK framework

    The Mitre ATT&CK (pronounced miter attack) framework is a free, globally accessible knowledge base that describes the latest ...

  • timing attack

    A timing attack is a type of side-channel attack that exploits the amount of time a computer process runs to gain knowledge about...

  • privileged identity management (PIM)

    Privileged identity management (PIM) is the monitoring and protection of superuser accounts that hold expanded access to an ...

CIO
HRSoftware
  • employee resource group (ERG)

    An employee resource group is a workplace club or more formally realized affinity group organized around a shared interest or ...

  • employee training and development

    Employee training and development is a set of activities and programs designed to enhance the knowledge, skills and abilities of ...

  • employee sentiment analysis

    Employee sentiment analysis is the use of natural language processing and other AI techniques to automatically analyze employee ...

Customer Experience
  • customer profiling

    Customer profiling is the detailed and systematic process of constructing a clear portrait of a company's ideal customer by ...

  • customer insight (consumer insight)

    Customer insight, also known as consumer insight, is the understanding and interpretation of customer data, behaviors and ...

  • buyer persona

    A buyer persona is a composite representation of a specific type of customer in a market segment.

Close