Browse Definitions :
7 top 5G enterprise use cases and business opportunities Wi-Fi 6 vs. 5G: Defining differences and the need for both
Definition

5G New Radio (NR)

What is 5G New Radio (NR)?

5G New Radio, or 5G NR, is a set of standards that replace the LTE network 4G wireless communications standard. An important goal of 5G NR is to support the growth of wireless communication by enhancing electromagnetic radiation spectrum efficiency for mobile broadband.

5G NR is designed to support fiber-equivalent bandwidth transmissions required for hungry applications like streaming video, as well as low-bandwidth transmissions used in machine-to-machine communications at massive scale where needed. 5G NR will also support transmissions with extremely low latency requirements -- an important consideration in vehicle-to-vehicle and vehicle-to-infrastructure communications.

Similar to its predecessors, the 5G NR standard was created by the 3rd Generation Partnership Project (3GPP), a coalition of telecommunications organizations that create technical standards for wireless technology. The first iteration of 5G NR appeared in 3GPP Release 15.

How does 5G NR work?

5G NR employs a raft of new engineering techniques that move more data through the core network faster and revolutionize the discrete operations of the air interface, which is the client device's interaction with the network provider radio hardware. Some of the improvements that 5G NR introduces are the following:

  • diversity of spectrum that ranges from several hundred kilohertz to millimeter wave (mmWave) to enable various use cases, cell sizes and data rates;
  • modulation -- new orthogonal frequency-division multiplexing methods -- and channel-coding techniques;
  • frequency reuse algorithms, even in dense environments;
  • massive multiple input, multiple output and evolved beamforming capabilities; and
  • slot time operations developed to deliver ultralow-latency communications.

All of these capabilities are underpinnings of 5G NR's significant gains in capacity, throughput and coverage.

Primary requirements for 5G NR

In order for a connection to qualify as 5G NR, several performance and connectivity requirements must be met. Some of these requirements are the following:

  • The connection must support wireless mobile connections.
  • Connectivity must support the internet of things (IoT), a concept that includes all of the various devices and wired or wireless connections that make up a user's digital experience, as well as sensor-type headless client devices.
  • It must implement a lean signaling design. This means that signals are only switched on when needed, lowering the overall processing power required of the client devices.
  • The connection must use adaptive bandwidth, which enables devices to switch to a low bandwidth and lower power whenever possible, saving energy for when higher bandwidths are necessary.
  • 5G NR should also enforce strict data transmission requirements. By forcing all users and connections to respect specific rules, it makes the entire network faster and more efficient.

Benefits of 5G NR

The benefits of 5G New Radio over even the best Long-Term Evolution (LTE)networks include the following:

  • larger wireless area capacity;
  • increased energy savings per device;
  • lower period of time between updates -- i.e., reduced average service creation time cycle;
  • improved links connecting larger number of users;
  • improved technology for maintaining the quality of a connection over a broad geographical area;
  • enhanced speed and data rates, meaning more bits are processed over a unit of time; and
  • improved efficiency in data sharing.

5G NR deployment modes

As is often the case with new wireless technology rollouts, there are various ways that 5G NR can be brought to life at a given site. Which deployment mode to use depends on several factors, including the existing infrastructure, whether or not a greenfield project is in play and what client types are expected in the 5G NR service area.

The three main 5G NR deployment modes are the following:

  1. For standalone mode, the full 5G technical paradigm is deployed. No residual 4G technical underpinnings are involved. And, if the clients can take advantage of the deployment, then all 5G benefits are realized.
  2. In nonstandalone mode, a site is essentially a hybrid. Some 4G network infrastructure stays in place. While the radio frequency side of 5G NR presents benefits, what it uplinks into means a lesser overall experience, compared with standalone mode. This model permits carriers to phase in full 5G architecture at sites, enabling them to tout their 5G progress.
  3. In the third deployment mode, dynamic spectrum sharing, the same frequency can do time-sliced duty in both 4G and 5G modes, using advanced antenna and transceiver processing. This means no single spectrum band has to be dedicated to just 4G or 5G.

5G NR spectrum

The 5G NR standard supports a number of low-, mid- and high-frequency bands. They are broken into frequency range 1, which includes frequency bands that are less than 6 gigahertz; frequency range 2, which includes bands with a low range combined with a high bandwidth; and mmWave.

The bands supported by 5G NR also include licensed spectrum and unlicensed spectrum 5G NR-U, which include bands than can be accessed by anyone. This wide diversity of spectrum slices is unique to 5G NR but helps to meet the demands of the spectrum-intensive technology.

5G and LTE: Key differences and bridging the gap

As LTE's incumbency yields to 5G, it's important to understand how the two technologies compare.

5G NR network architecture will diverge from LTE's tower-centric model somewhat because the higher frequencies in use require high quantities of smaller pole- and building-mounted nodes to get the network to users. While carrier mobile networks go through the rigors of updating their infrastructures for 5G NR, consumers and businesses can follow the progress at a number of websites.

For private 5G NR deployments, Citizens Broadband Radio Service provides a compelling option. It's also worth noting that 5G networks need compatible clients to truly take advantage of the new technology's promise, and we are seeing ever more 5G client devices. Lastly, 5G NR continues to develop in phases, just as 4G/LTE did. So, not all 5G NR networks will be the same from a capability and capacity standpoint at any given time.

5G NR brings advancements in cellular technologies not found in 4G. These advancements deliver impressive benefits and fulfill the ultimate goal of being ultrareliable. Some of the advancements are the following:

  • Flexible numerology is a complex engineering concept that enables dynamic adaptation of time slots and subcarrier spacing to achieve low latency for applications that need it, as well as provide coexistence between LTE and NR where required.
  • Hybrid automatic repeat request (HARQ) is occasionally mentioned in 5G NR discussions. HARQ works at the lowest network layers to adaptively optimize forward error correction and retransmit functions for lower bit error rates.
  • Time-division duplexing (TDD) is a technique in which uplink and downlink functions happen on the same frequency. As expected, in 5G NR, TDD has been retooled for speed and flexibility.
  • Inactive state is a power-saving enhancement in 5G NR that augments 4G's idle and connected At its simplest, the new inactive state reduces load on the control plane at scale where many devices need to come out of sleep mode to transmit data.
This was last updated in April 2022

Continue Reading About 5G New Radio (NR)

SearchNetworking
  • cloud-native network function (CNF)

    A cloud-native network function (CNF) is a service that performs network duties in software, as opposed to purpose-built hardware.

  • microsegmentation

    Microsegmentation is a security technique that splits a network into definable zones and uses policies to dictate how data and ...

  • Wi-Fi 6E

    Wi-Fi 6E is one variant of the 802.11ax standard.

SearchSecurity
  • MICR (magnetic ink character recognition)

    MICR (magnetic ink character recognition) is a technology invented in the 1950s that's used to verify the legitimacy or ...

  • What is cybersecurity?

    Cybersecurity is the protection of internet-connected systems such as hardware, software and data from cyberthreats.

  • Android System WebView

    Android System WebView is a system component for the Android operating system (OS) that allows Android apps to display web ...

SearchCIO
  • privacy compliance

    Privacy compliance is a company's accordance with established personal information protection guidelines, specifications or ...

  • contingent workforce

    A contingent workforce is a labor pool whose members are hired by an organization on an on-demand basis.

  • product development (new product development -- NPD)

    Product development, also called new product management, is a series of steps that includes the conceptualization, design, ...

SearchHRSoftware
  • talent acquisition

    Talent acquisition is the strategic process employers use to analyze their long-term talent needs in the context of business ...

  • employee retention

    Employee retention is the organizational goal of keeping productive and talented workers and reducing turnover by fostering a ...

  • hybrid work model

    A hybrid work model is a workforce structure that includes employees who work remotely and those who work on site, in a company's...

SearchCustomerExperience
  • Salesforce Trailhead

    Salesforce Trailhead is a series of online tutorials that coach beginner and intermediate developers who need to learn how to ...

  • Salesforce

    Salesforce, Inc. is a cloud computing and social enterprise software-as-a-service (SaaS) provider based in San Francisco.

  • data clean room

    A data clean room is a technology service that helps content platforms keep first person user data private when interacting with ...

Close